Abstract 1189P
Background
Implementing precision oncology in clinical practice faces the challenge of accurately interpreting genomic alterations in tumors, ultimately improving patient outcomes. The rapid development of next-generation sequencing (NGS) and the introduction of large gene panels (including whole exome and whole genome sequencing) into clinical settings underscore the need for advanced systems capable of interpreting increasingly vast genomic data. An additional hurdle in interpreting tumor mutations is the high prevalence of variants of unknown significance (VUS) identified in cancer patients.
Methods
To address these challenges in cancer variant interpretation, we developed the Cancer Genome Interpreter (CGI) tool. Currently, through the EU-funded CGI-Clinics project, we are further optimizing CGI for clinical implementation in collaboration with ten hospitals across five European countries and considering the patient's perspective.
Results
CGI identifies the oncogenic mutations from a tumor and highlights biomarkers of drug response associated with these mutations. A key singularity of the CGI tool is its integration of data-driven approaches in combination with expert-curated databases to comprehensively classify mutations, identifying the oncogenic ones. Specifically, CGI integrates IntOGen, a computational framework for pinpointing cancer driver genes, and BoostDM, a machine learning-based method for identifying cancer driver mutations. These computational methods are tumor- and gene-specific, providing an oncogenicity classification to each mutation, including VUS, while explaining the mutational features used for that annotation. These and other data-driven approaches constitute CGI’s automatic learning platform, which leverages mutation data from thousands of cancer genomes. Continuous access to an increasing number of tumor genomes improves CGI’s interpretation capabilities for current and future cancer patients.
Conclusions
The CGI tool enhances the interpretation of tumor variants from cancer patients by employing data-driven computational methodologies to interpret both known mutations and VUS. CGI is currently undergoing clinical adaptation for its implementation as a clinical decision-support tool.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Barcelona Biomedical Genomics Group (IRB Barcelona).
Funding
European Union's Horizon Europe programme under grant agreement 101057509 (CGI-Clinics project).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
707P - Paclitaxel, ifosfamide and cisplatin (TIP) in patients (pts) with poor prognosis nonseminomatous germ cell tumor (NSGCT) with unfavourable serum tumor markers (STM) decline: A phase II study
Presenter: Edgar Israelyan
Session: Poster session 09
708P - The Empower Pathway: An audit of the first 150 patients. Enhanced personalised care of testicular cancer survivors
Presenter: Penny Champion
Session: Poster session 09
817P - A machine learning algorithm utilizing clinicopathologic parameters for extranodal natural killer/T cell lymphoma
Presenter: Shuo Li
Session: Poster session 09
Resources:
Abstract
818P - The association between hospital volume and overall survival in adult AML patients treated with intensive chemotherapy
Presenter: Z.L.Rana Kaplan
Session: Poster session 09
819P - Efficacy and safety of orelabrutinib plus R-CHOP-like regimens for treatment-naïve diffuse large B-cell lymphoma with double expression
Presenter: Wei Wan
Session: Poster session 09
820P - Second primary malignancies and disease transformation in symptomatic patients with Waldenstrom’s macroglobulinemia: Outcomes of a population-based analysis
Presenter: Vasiliki Spiliopoulou
Session: Poster session 09
821P - Circulating chromosomal alterations in lymphoid malignancies
Presenter: Rosalie Griffin
Session: Poster session 09
822P - Preliminary results from a phase Ib study of amulirafusp alfa (IMM0306) in combination with lenalidomide in patients with relapsed or refractory CD20-positive B-cell non-Hodgkin's lymphoma
Presenter: Lijuan Deng
Session: Poster session 09
823P - The bone marrow immune ecosystem shapes acquired resistance to daratumumab in plasma cell myeloma
Presenter: Yun Wang
Session: Poster session 09
824P - FLT3-ITD induces immune escape in AML via up-regulating CD47 expression and decreased phagpcytic ability of macrophages
Presenter: Shuzhao Chen
Session: Poster session 09