Abstract 1189P
Background
Implementing precision oncology in clinical practice faces the challenge of accurately interpreting genomic alterations in tumors, ultimately improving patient outcomes. The rapid development of next-generation sequencing (NGS) and the introduction of large gene panels (including whole exome and whole genome sequencing) into clinical settings underscore the need for advanced systems capable of interpreting increasingly vast genomic data. An additional hurdle in interpreting tumor mutations is the high prevalence of variants of unknown significance (VUS) identified in cancer patients.
Methods
To address these challenges in cancer variant interpretation, we developed the Cancer Genome Interpreter (CGI) tool. Currently, through the EU-funded CGI-Clinics project, we are further optimizing CGI for clinical implementation in collaboration with ten hospitals across five European countries and considering the patient's perspective.
Results
CGI identifies the oncogenic mutations from a tumor and highlights biomarkers of drug response associated with these mutations. A key singularity of the CGI tool is its integration of data-driven approaches in combination with expert-curated databases to comprehensively classify mutations, identifying the oncogenic ones. Specifically, CGI integrates IntOGen, a computational framework for pinpointing cancer driver genes, and BoostDM, a machine learning-based method for identifying cancer driver mutations. These computational methods are tumor- and gene-specific, providing an oncogenicity classification to each mutation, including VUS, while explaining the mutational features used for that annotation. These and other data-driven approaches constitute CGI’s automatic learning platform, which leverages mutation data from thousands of cancer genomes. Continuous access to an increasing number of tumor genomes improves CGI’s interpretation capabilities for current and future cancer patients.
Conclusions
The CGI tool enhances the interpretation of tumor variants from cancer patients by employing data-driven computational methodologies to interpret both known mutations and VUS. CGI is currently undergoing clinical adaptation for its implementation as a clinical decision-support tool.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Barcelona Biomedical Genomics Group (IRB Barcelona).
Funding
European Union's Horizon Europe programme under grant agreement 101057509 (CGI-Clinics project).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1181P - Diagnostic target product profiles for cancer: A demand signaling tool to stimulate innovation in early cancer diagnosis
Presenter: Sonja Marjanovic
Session: Poster session 09
1182P - Determination of tumor PSMA expression in prostate cancer from blood using a novel epigenomic liquid biopsy platform
Presenter: Praful Ravi
Session: Poster session 09
1183P - Impact of multicancer early detection (MCED) test on participant-reported outcomes (PRO) and behavioral intentions by cancer risk
Presenter: Christina Dilaveri
Session: Poster session 09
1184P - Early real-world experience with positive multi-cancer early detection (MCED) test cases and negative initial diagnostic work-up
Presenter: Candace Westgate
Session: Poster session 09
1185P - Clinical applications of a novel blood-based fragmentomics assay for lung cancer detection
Presenter: Marc Siegel
Session: Poster session 09
1186P - SmartCS-LPLLM: Enhancing early cancer detection through ctDNA methylation analysis leveraging large language models
Presenter: Li Chao
Session: Poster session 09
1187P - Molecular diagnosis of lung cancer via ctDNA and ctRNA detection on bronchoscopic fluid specimens from 31 patients: A retrospective analysis
Presenter: Vincent Fallet
Session: Poster session 09
1188P - Modeled economic and clinical impact of a multi-cancer early detection (MCED) test in a population with hereditary cancer syndromes
Presenter: Sana Raoof
Session: Poster session 09
1190P - Circulating tumor DNA from the tumor-draining pulmonary vein as a biomarker in resected non-small cell lung cancer
Presenter: Raphael Werner
Session: Poster session 09
1191P - Efficient lung cancer stage prediction and outcome informatics with Bayesian deep learning and MCMC method
Presenter: Maria Gkotzamanidou
Session: Poster session 09