Abstract 817P
Background
Current clinical prediction indexes lack the requisite accuracy for extranodal natural killer/T-cell lymphoma (ENKTL) following non-anthracycline-based therapy. This study addresses this gap by introducing and validating a machine learning (ML) algorithm based on clinicopathologic parameters to effectively stratify risk among ENKTL patients.
Methods
Data from 977 patients with ENKTL from 3 cohorts of China were analyzed. 15 ML algorithms were trained and validated for overall survival (OS) prediction in 644 patients from Sun Yat-sen University Cancer Center. The optimization of hyperparameters was conducted through an exhaustive ten-fold cross-validation grid search. External validations were performed in two external cohorts (N=187 from West China Hospital, and N=146 from Sichuan Cancer Hospital, respectively). Evaluation of model performance included Harrell’s c-index, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis.
Results
Among the 15 ML algorithms tested, Gradient Boosting Machine (GBM) demonstrated superior performance. The ENKTL-ML score, generated by GBM, incorporated 13 clinicopathologic parameters. In external validation cohorts, the c-indexes for the ENKTL-ML score were 0.84 (95% confidence interval [CI]: 0.81, 0.88) and 0.83 (0.72, 0.94), respectively. The area under ROC curves for 5-year OS were ≥ 0.81. The ENKTL-ML score outperformed existing indexes in discriminatory ability and treatment recommendations. Notably, it effectively stratified patients into low-, intermediate-, and high-risk groups with distinctive survival outcomes. The ENKTL-ML score demonstrated the ability to differentiate low-risk patients from those at stage I. Adding anti-PD-1 immunotherapy as first-line treatment significantly improved survival in the high-risk group, with no substantial benefit observed in low/intermediate-risk patients. An online calculator for the ENKTL-ML score is accessible online.
Conclusions
The ENKTL-ML score serves as an innovative machine learning tool, facilitating risk stratification and aiding clinicians in decision-making for ENKTL patient management.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Y. Huang.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
202P - eIF4E inhibition exhibits anti-tumor activity and re-sensitizes acquired resistant KRAS G12C NSCLC to KRAS inhibitors
Presenter: Andrew Truong
Session: Poster session 09
203P - An innovative evidence-based laboratory medicine (EBLM) test to help doctors in multi-cancer early detection (MCED)
Presenter: Jose D Santotoribio
Session: Poster session 09
204P - Assessing biomarker testing awareness among patients and caregivers in NSCLC through an interdisciplinary global survey
Presenter: Rodrigo Paredes
Session: Poster session 09
205P - Detection and diagnosis of lung cancer by electronic nose analysis of exhaled breath: A multi-center prospective observational study
Presenter: Alessandra Buma
Session: Poster session 09
206P - Unveiling the link: How metabolic syndrome drives endometrial cancer progression
Presenter: Lirong Zhai
Session: Poster session 09
Resources:
Abstract
207P - Associations of diabetic background retinopathy and ER+ breast cancer risk: A Mendelian randomization study
Presenter: Shu Wang
Session: Poster session 09
208P - Role of plasma exosomes in crosstalk between immune system and hereditary ovarian cancer: Opportunity or challenge?
Presenter: Daniele Fanale
Session: Poster session 09
209P - A novel method for early evaluation of drug-specific predictive biomarker
Presenter: Gal Dinstag
Session: Poster session 09
210P - Therapeutic implications of phosphoproteomics in molecular cancer diagnostics
Presenter: Annika Schneider
Session: Poster session 09
211P - GynePDX: A new platform of preclinical models for endometrial and ovarian cancers
Presenter: Melek Denizli
Session: Poster session 09