Abstract 1189P
Background
Implementing precision oncology in clinical practice faces the challenge of accurately interpreting genomic alterations in tumors, ultimately improving patient outcomes. The rapid development of next-generation sequencing (NGS) and the introduction of large gene panels (including whole exome and whole genome sequencing) into clinical settings underscore the need for advanced systems capable of interpreting increasingly vast genomic data. An additional hurdle in interpreting tumor mutations is the high prevalence of variants of unknown significance (VUS) identified in cancer patients.
Methods
To address these challenges in cancer variant interpretation, we developed the Cancer Genome Interpreter (CGI) tool. Currently, through the EU-funded CGI-Clinics project, we are further optimizing CGI for clinical implementation in collaboration with ten hospitals across five European countries and considering the patient's perspective.
Results
CGI identifies the oncogenic mutations from a tumor and highlights biomarkers of drug response associated with these mutations. A key singularity of the CGI tool is its integration of data-driven approaches in combination with expert-curated databases to comprehensively classify mutations, identifying the oncogenic ones. Specifically, CGI integrates IntOGen, a computational framework for pinpointing cancer driver genes, and BoostDM, a machine learning-based method for identifying cancer driver mutations. These computational methods are tumor- and gene-specific, providing an oncogenicity classification to each mutation, including VUS, while explaining the mutational features used for that annotation. These and other data-driven approaches constitute CGI’s automatic learning platform, which leverages mutation data from thousands of cancer genomes. Continuous access to an increasing number of tumor genomes improves CGI’s interpretation capabilities for current and future cancer patients.
Conclusions
The CGI tool enhances the interpretation of tumor variants from cancer patients by employing data-driven computational methodologies to interpret both known mutations and VUS. CGI is currently undergoing clinical adaptation for its implementation as a clinical decision-support tool.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Barcelona Biomedical Genomics Group (IRB Barcelona).
Funding
European Union's Horizon Europe programme under grant agreement 101057509 (CGI-Clinics project).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
212P - BRGSF-HIS mice as a predictive tool for safety assessment of biologics
Presenter: Kader Thiam
Session: Poster session 09
213P - Constructing a high-definition patient-digital twin (PDT) in treatment-naïve women with advanced cancer
Presenter: Leonardo Garma
Session: Poster session 09
215P - Detection of MUTYH for the prognosis and chemotherapy responsiveness of patients with non-small cell lung cancer
Presenter: Chi Wai Wong
Session: Poster session 09
216P - β-catenin is a potential prognostic biomarker in uterine sarcoma
Presenter: Ying Cai
Session: Poster session 09
218P - Exploiting a unique glycosaminoglycan for novel pan-cancer therapies and diagnostics
Presenter: Mette Agerbæk
Session: Poster session 09
219P - The landscape and prognostic impact of germline HLA-A subtypes in patients with advanced solid cancers
Presenter: Kyrillus Shohdy
Session: Poster session 09
220P - The role of fucosyltransferase 1 (FUT1) in CRC as a putative prognostic and predictive biomarker
Presenter: Lorenz Pammer
Session: Poster session 09
221P - ANGPTL4's role in cancer: A meta analysis and bioinformatics exploration
Presenter: Osama Younis
Session: Poster session 09
222P - Artificial intelligence (AI) based prognostication from baseline computed tomography (CT) scans in a phase III advanced non-small cell lung cancer (aNSCLC) trial
Presenter: Omar Khan
Session: Poster session 09