Abstract 1189P
Background
Implementing precision oncology in clinical practice faces the challenge of accurately interpreting genomic alterations in tumors, ultimately improving patient outcomes. The rapid development of next-generation sequencing (NGS) and the introduction of large gene panels (including whole exome and whole genome sequencing) into clinical settings underscore the need for advanced systems capable of interpreting increasingly vast genomic data. An additional hurdle in interpreting tumor mutations is the high prevalence of variants of unknown significance (VUS) identified in cancer patients.
Methods
To address these challenges in cancer variant interpretation, we developed the Cancer Genome Interpreter (CGI) tool. Currently, through the EU-funded CGI-Clinics project, we are further optimizing CGI for clinical implementation in collaboration with ten hospitals across five European countries and considering the patient's perspective.
Results
CGI identifies the oncogenic mutations from a tumor and highlights biomarkers of drug response associated with these mutations. A key singularity of the CGI tool is its integration of data-driven approaches in combination with expert-curated databases to comprehensively classify mutations, identifying the oncogenic ones. Specifically, CGI integrates IntOGen, a computational framework for pinpointing cancer driver genes, and BoostDM, a machine learning-based method for identifying cancer driver mutations. These computational methods are tumor- and gene-specific, providing an oncogenicity classification to each mutation, including VUS, while explaining the mutational features used for that annotation. These and other data-driven approaches constitute CGI’s automatic learning platform, which leverages mutation data from thousands of cancer genomes. Continuous access to an increasing number of tumor genomes improves CGI’s interpretation capabilities for current and future cancer patients.
Conclusions
The CGI tool enhances the interpretation of tumor variants from cancer patients by employing data-driven computational methodologies to interpret both known mutations and VUS. CGI is currently undergoing clinical adaptation for its implementation as a clinical decision-support tool.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Barcelona Biomedical Genomics Group (IRB Barcelona).
Funding
European Union's Horizon Europe programme under grant agreement 101057509 (CGI-Clinics project).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
224P - Lung cancer scRNA-seq analyses reveal potential mechanisms causing different efficacy of target therapy and immunotherapy between EGFR 19del and L858R lung adenocarcinoma
Presenter: Hao Wang
Session: Poster session 09
225P - Nivolumab for cancer of unknown primary (CUP): Clinical efficacy and biomarker analysis from NivoCUP2 expanded access program (WJOG14620M)
Presenter: Junko Tanizaki
Session: Poster session 09
226TiP - CLEAR-Me: Interception trial to detect and clear molecular residual disease in patients with high-risk melanoma
Presenter: Erick Saldanha
Session: Poster session 09
227TiP - A phase II, open label, randomized, non-comparative cohorts study of adjuvant atezolizumab or atezolizumab plus tiragolumab in solid tumors with resectable disease with intermediate-high risk of recurrence and high tumor mutational burden (TMB-H) or microsatellite instability (MSI-H)
Presenter: Guillermo Antonio De Velasco Oria
Session: Poster session 09
228TiP - FINPROVE: The Finnish national study to facilitate patient access to targeted anti-cancer drugs
Presenter: Mika Mustonen
Session: Poster session 09
229TiP - A phase II trial of a neural network-based treatment decision support tool in patients (pts) with refractory solid organ malignancies
Presenter: Robert Walsh
Session: Poster session 09
230TiP - Exploring mechanisms of action and resistance in innovate cancer therapies: The UNLOCK program
Presenter: Beatriz Alonso de Castro
Session: Poster session 09
694P - Sequential high-dose-chemotherapy with 4 cycles paclitaxel, ifosfamide, carboplatin, etoposide (P-ICE) in relapsed/refractory male germ cell cancer: Final results with 15.8 years follow-up
Presenter: Hans Joachim Schmoll
Session: Poster session 09
695P - Assessment of the utility of CT scans in the long-term follow-up of metastatic non-seminomatous germ cell tumours (mNSGCT): The Late CT study
Presenter: Deep Chakrabarti
Session: Poster session 09
696P - Post chemotherapy retroperitoneal lymph node dissection (PC-RPLND) for metastatic pure seminoma
Presenter: David Pfister
Session: Poster session 09