Abstract 1189P
Background
Implementing precision oncology in clinical practice faces the challenge of accurately interpreting genomic alterations in tumors, ultimately improving patient outcomes. The rapid development of next-generation sequencing (NGS) and the introduction of large gene panels (including whole exome and whole genome sequencing) into clinical settings underscore the need for advanced systems capable of interpreting increasingly vast genomic data. An additional hurdle in interpreting tumor mutations is the high prevalence of variants of unknown significance (VUS) identified in cancer patients.
Methods
To address these challenges in cancer variant interpretation, we developed the Cancer Genome Interpreter (CGI) tool. Currently, through the EU-funded CGI-Clinics project, we are further optimizing CGI for clinical implementation in collaboration with ten hospitals across five European countries and considering the patient's perspective.
Results
CGI identifies the oncogenic mutations from a tumor and highlights biomarkers of drug response associated with these mutations. A key singularity of the CGI tool is its integration of data-driven approaches in combination with expert-curated databases to comprehensively classify mutations, identifying the oncogenic ones. Specifically, CGI integrates IntOGen, a computational framework for pinpointing cancer driver genes, and BoostDM, a machine learning-based method for identifying cancer driver mutations. These computational methods are tumor- and gene-specific, providing an oncogenicity classification to each mutation, including VUS, while explaining the mutational features used for that annotation. These and other data-driven approaches constitute CGI’s automatic learning platform, which leverages mutation data from thousands of cancer genomes. Continuous access to an increasing number of tumor genomes improves CGI’s interpretation capabilities for current and future cancer patients.
Conclusions
The CGI tool enhances the interpretation of tumor variants from cancer patients by employing data-driven computational methodologies to interpret both known mutations and VUS. CGI is currently undergoing clinical adaptation for its implementation as a clinical decision-support tool.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Barcelona Biomedical Genomics Group (IRB Barcelona).
Funding
European Union's Horizon Europe programme under grant agreement 101057509 (CGI-Clinics project).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
835P - Genetic, epigenetic, and clinical significance of Wilms’ tumor 1 (WT1) gene in acute myeloid leukemia
Presenter: Harsh Goel
Session: Poster session 09
Resources:
Abstract
836P - A prospective study to evaluate the prognostic implications and molecular mechanism of SLC40A1 gene in primary acute myeloid leukemia
Presenter: Harsh Goel
Session: Poster session 09
Resources:
Abstract
837P - Expression analysis, clinical significance and potential function of ALOX5AP in acute myeloid leukemia
Presenter: Harsh Goel
Session: Poster session 09
Resources:
Abstract
838P - Bayesian modeling in the survival analysis of patients with multiple myeloma with emphasis on missing data analysis
Presenter: Nelson Cruz Gutierrez
Session: Poster session 09
839P - Preliminary results from a phase II study of amulirafusp alfa (IMM0306) in patients with relapsed or refractory CD20-positive B-cell non-Hodgkin's lymphoma
Presenter: jianliang yang
Session: Poster session 09
840P - Orelabrutinib-based regimens in chronic lymphocytic leukemia with comorbidities: A real-world study
Presenter: Xun Lai
Session: Poster session 09
841P - Transforming the landscape of pediatric AML treatment: A cutting-edge SCT prognostic model
Presenter: Hua Yang
Session: Poster session 09
Resources:
Abstract
842P - Exploring the association of side-effects with depression in patients with chronic lymphocytic leukemia who have received treatment: An analysis of the lymphoma coalition’s 2022 global patient survey
Presenter: Natacha Bolanos Fernandez
Session: Poster session 09
843P - Challenges and insights in treating Langerhans cell histiocytosis: Persistent mutations and novel therapeutic approaches
Presenter: Marzieh NASHVI
Session: Poster session 09
844TiP - Orelabrutinib combined with rituximab for the treatment of elderly patients with newly diagnosed non-GCB diffuse large B-cell lymphoma (DLBCL) under the guidance of genetic subtype: A prospective, multicenter, single-arm, response-adaptive clinical study (Origin)
Presenter: Wanzhuo Xie
Session: Poster session 09