Abstract 182P
Background
Mutations in the MAPK/ERK pathway are frequently found across cancer entities, including colorectal cancer (CRC) where the accurate diagnosis of KRAS and BRAF mutational status is pivotal for treatment decisions. While the mutation analysis is usually done via genomic sequencing, the prediction of mutations from histological images using artificial intelligence (AI) could present a faster alternative with broad potential for diagnostic routine, research applications, and trial recruitment. However, to date, such algorithms typically do not meet the required accuracy criteria for real-world application in different institutions.
Methods
Since the frequency of both BRAFmut and KRASmut is associated with easily available clinical patient parameters, we developed a multi-modal predictive AI model on n = 455 CRC cases from the TCGA database and UPenn. Besides patient data, the AI model uses the BRAFmut/KRASmut information and hematoxylin & eosin (H&E)-stained tissue images. We evaluated the model on an independent hold-out TCGA cohort of n = 114 samples and an additional external cohort of n = 104 CRC samples from the CPTAC database.
Results
With our multi-modal approach the AI model achieved an AUROC of 0.84 ± 0.02 and 0.67 ± 0.01 for BRAF/KRAS respectively on the TCGA hold-out test set. Accuracy levels were similar on the second external testing dataset (CPTAC) (AUROC of 0.82 ± 0.02 and 0.72 ± 0.01) indicating the model’s ability to generalize across different cohorts. Notably, accuracy values obtained with the multi-modal training setup were significantly higher than those from models that were trained with image data only (AUROCs (CPTAC): BRAF 0.73 +- 0.02, KRAS: 0.64 +- 0.03).
Conclusions
By analyzing mutations in two of the most frequently mutated genes in CRC in two separate cohorts, we demonstrate that the inclusion of patient parameters in AI training can provide added value for diagnostic accuracy of AI models that predict mutations from H&E images. Our results also support previous findings that some driver mutations can be more accurately predicted from tissue than others. Altogether, these results show the potential of multi-modal deep learning to bring predictive AI towards real-world application in pathology.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Mindpeak GmbH.
Funding
Mindpeak GmbH.
Disclosure
M. Päpper: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Stocks/Shares: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH. P. Frey: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH. T. Lang: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH; Financial Interests, Personal, Stocks or ownership: Mindpeak GmbH. All other authors have declared no conflicts of interest.
Resources from the same session
183P - Development of a cadherin-17 (CDH17) immunohistochemistry assay for use as a companion diagnostic for cabotamig in gastrointestinal cancers
Presenter: Dennis Wong
Session: Poster session 08
184P - From breast and gastric to beyond: Expanding HER2 detection in solid tumors using quantitative RNA and protein analysis
Presenter: Kristian Egebjerg
Session: Poster session 08
185P - Multi-omics profiling and clinical characterization of colon-like cancer of unknown primary (CUP)
Presenter: Maria Pouyiourou
Session: Poster session 08
186P - Differences in antigen and immune marker expression in lymphoepithelioma-like carcinoma (LELC) and nasopharyngeal carcinoma (NPC): A multiplex immunohistochemistry (mIHC), spatial transcriptomic and multiplex immunofluorescence (mIF)-based analysis
Presenter: Daniel Peh
Session: Poster session 08
187P - Organoid growth-based oncological sensitivity test (OncoSensi) for predicting radiation therapy outcomes in pharyngeal and esophageal cancer
Presenter: Dong Woo Lee
Session: Poster session 08
188P - Integration of immunohistochemistry and transcriptomics reveals new insights into the immune landscape of soft-tissue sarcomas
Presenter: Giulia Petroni
Session: Poster session 08
189P - An image-based deep learning prediction model for characterization of the drug tolerant persister cell state
Presenter: Lauren Cech
Session: Poster session 08
190P - A large scale proteogenomics atlas for precision oncology research
Presenter: Timothy Anthony Yap
Session: Poster session 08
191P - Understanding and overcoming resistance to selective FGFR inhibitors across FGFR2-driven tumors
Presenter: Francesco Facchinetti
Session: Poster session 08
192P - Use of biosimulation to predict homologous recombination deficiency and PARPi benefit in patients with ovarian, pancreatic, prostate and triple negative breast cancers
Presenter: Daniel Palmer
Session: Poster session 08