Abstract 182P
Background
Mutations in the MAPK/ERK pathway are frequently found across cancer entities, including colorectal cancer (CRC) where the accurate diagnosis of KRAS and BRAF mutational status is pivotal for treatment decisions. While the mutation analysis is usually done via genomic sequencing, the prediction of mutations from histological images using artificial intelligence (AI) could present a faster alternative with broad potential for diagnostic routine, research applications, and trial recruitment. However, to date, such algorithms typically do not meet the required accuracy criteria for real-world application in different institutions.
Methods
Since the frequency of both BRAFmut and KRASmut is associated with easily available clinical patient parameters, we developed a multi-modal predictive AI model on n = 455 CRC cases from the TCGA database and UPenn. Besides patient data, the AI model uses the BRAFmut/KRASmut information and hematoxylin & eosin (H&E)-stained tissue images. We evaluated the model on an independent hold-out TCGA cohort of n = 114 samples and an additional external cohort of n = 104 CRC samples from the CPTAC database.
Results
With our multi-modal approach the AI model achieved an AUROC of 0.84 ± 0.02 and 0.67 ± 0.01 for BRAF/KRAS respectively on the TCGA hold-out test set. Accuracy levels were similar on the second external testing dataset (CPTAC) (AUROC of 0.82 ± 0.02 and 0.72 ± 0.01) indicating the model’s ability to generalize across different cohorts. Notably, accuracy values obtained with the multi-modal training setup were significantly higher than those from models that were trained with image data only (AUROCs (CPTAC): BRAF 0.73 +- 0.02, KRAS: 0.64 +- 0.03).
Conclusions
By analyzing mutations in two of the most frequently mutated genes in CRC in two separate cohorts, we demonstrate that the inclusion of patient parameters in AI training can provide added value for diagnostic accuracy of AI models that predict mutations from H&E images. Our results also support previous findings that some driver mutations can be more accurately predicted from tissue than others. Altogether, these results show the potential of multi-modal deep learning to bring predictive AI towards real-world application in pathology.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Mindpeak GmbH.
Funding
Mindpeak GmbH.
Disclosure
M. Päpper: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Stocks/Shares: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH. P. Frey: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH. T. Lang: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH; Financial Interests, Personal, Stocks or ownership: Mindpeak GmbH. All other authors have declared no conflicts of interest.
Resources from the same session
112P - Reporting of molecular test results from cell-free DNA analyses: Expert consensus recommendations from the 2023 European Liquid Biopsy Society ctDNA workshop
Presenter: Vincent de Jager
Session: Poster session 08
114P - Prevalence and landscape of pathogenic or likely pathogenic germline variants in cancer predisposition genes among selected patients with lung adenocarcinoma
Presenter: Oscar Gerardo Arrieta Rodriguez
Session: Poster session 08
115P - Gene rearrangements, actionability and access to precision medicine: Results from the ARCAGEN study
Presenter: Marie Morfouace
Session: Poster session 08
116P - Single-cell RNA sequencing reveals a subset of FSIP1 cancer cells and verified its value of prognosis in lung adenocarcinoma
Presenter: Xiaochen Zhang
Session: Poster session 08
Resources:
Abstract
117P - Methylome and transcriptome profiling of hepatoid adenocarcinoma of the stomach
Presenter: Shirong Zhang
Session: Poster session 08
Resources:
Abstract
118P - Comparative analysis of DNA and RNA-based NGS for detecting MET exon 14 skipping mutation in pan-solid tumor samples
Presenter: Ruijun Cai
Session: Poster session 08
119P - Predicting the pathogenicity of novel fusion genes and explaining reasons using a large language model: A focused assessment
Presenter: Katsuhiko Murakami
Session: Poster session 08
120P - A prospective comparative evaluation of automatic trial match tools in a molecular tumor board
Presenter: Lilia GUEGUEN
Session: Poster session 08