Abstract 182P
Background
Mutations in the MAPK/ERK pathway are frequently found across cancer entities, including colorectal cancer (CRC) where the accurate diagnosis of KRAS and BRAF mutational status is pivotal for treatment decisions. While the mutation analysis is usually done via genomic sequencing, the prediction of mutations from histological images using artificial intelligence (AI) could present a faster alternative with broad potential for diagnostic routine, research applications, and trial recruitment. However, to date, such algorithms typically do not meet the required accuracy criteria for real-world application in different institutions.
Methods
Since the frequency of both BRAFmut and KRASmut is associated with easily available clinical patient parameters, we developed a multi-modal predictive AI model on n = 455 CRC cases from the TCGA database and UPenn. Besides patient data, the AI model uses the BRAFmut/KRASmut information and hematoxylin & eosin (H&E)-stained tissue images. We evaluated the model on an independent hold-out TCGA cohort of n = 114 samples and an additional external cohort of n = 104 CRC samples from the CPTAC database.
Results
With our multi-modal approach the AI model achieved an AUROC of 0.84 ± 0.02 and 0.67 ± 0.01 for BRAF/KRAS respectively on the TCGA hold-out test set. Accuracy levels were similar on the second external testing dataset (CPTAC) (AUROC of 0.82 ± 0.02 and 0.72 ± 0.01) indicating the model’s ability to generalize across different cohorts. Notably, accuracy values obtained with the multi-modal training setup were significantly higher than those from models that were trained with image data only (AUROCs (CPTAC): BRAF 0.73 +- 0.02, KRAS: 0.64 +- 0.03).
Conclusions
By analyzing mutations in two of the most frequently mutated genes in CRC in two separate cohorts, we demonstrate that the inclusion of patient parameters in AI training can provide added value for diagnostic accuracy of AI models that predict mutations from H&E images. Our results also support previous findings that some driver mutations can be more accurately predicted from tissue than others. Altogether, these results show the potential of multi-modal deep learning to bring predictive AI towards real-world application in pathology.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Mindpeak GmbH.
Funding
Mindpeak GmbH.
Disclosure
M. Päpper: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Stocks/Shares: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH. P. Frey: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH. T. Lang: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH; Financial Interests, Personal, Stocks or ownership: Mindpeak GmbH. All other authors have declared no conflicts of interest.
Resources from the same session
133P - Neoadjuvant pembrolizumab plus lenvatinib in resectable stage III melanoma patients (pts) (NeoPele): Analysis of the peripheral immune profile correlated to pathological response
Presenter: Ines Pires da Silva
Session: Poster session 08
134P - Unraveling functionally distinct metabolic programs to predict immunotherapy response in non-small cell lung cancer (NSCLC)
Presenter: Arutha Kulasinghe
Session: Poster session 08
135P - Soluble PD-L1 (sPD-L1) as a predictive biomarker in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs) in the first-line setting
Presenter: Adrien Costantini
Session: Poster session 08
136P - Circulating hPG80 (WNT pathway activation) as a potential new prognostic/predictive factor of immunotherapy (ICI) efficacy: ONCOPRO prospective study
Presenter: Benoit You
Session: Poster session 08
137P - Long circulating-free DNA fragments predict early-progression (EP) and progression-free survival (PFS) in advanced carcinoma treated with immune-checkpoint inhibition (ICI): A new biomarker
Presenter: Sebastien Salas
Session: Poster session 08
138P - Toward predicting immune checkpoint blockade response in oesophageal squamous cell carcinoma: Integrating tumour and blood characteristics
Presenter: Amelie Franken
Session: Poster session 08
139P - Multimodal prognosis modeling of advanced NSCLC treated with first-line immunochemotherapy: Integrating genomic and microenvironmental data
Presenter: Yi Hu
Session: Poster session 08
140P - Mining metastatic lymph nodes for response to immune checkpoint therapy in non-small cell lung cancer
Presenter: Elena Donders
Session: Poster session 08
141P - Circulating immune cells predict immunotherapy benefit in patients with triple negative breast cancer: Preliminary results from the IRIS study
Presenter: Benedetta Conte
Session: Poster session 08