Abstract 182P
Background
Mutations in the MAPK/ERK pathway are frequently found across cancer entities, including colorectal cancer (CRC) where the accurate diagnosis of KRAS and BRAF mutational status is pivotal for treatment decisions. While the mutation analysis is usually done via genomic sequencing, the prediction of mutations from histological images using artificial intelligence (AI) could present a faster alternative with broad potential for diagnostic routine, research applications, and trial recruitment. However, to date, such algorithms typically do not meet the required accuracy criteria for real-world application in different institutions.
Methods
Since the frequency of both BRAFmut and KRASmut is associated with easily available clinical patient parameters, we developed a multi-modal predictive AI model on n = 455 CRC cases from the TCGA database and UPenn. Besides patient data, the AI model uses the BRAFmut/KRASmut information and hematoxylin & eosin (H&E)-stained tissue images. We evaluated the model on an independent hold-out TCGA cohort of n = 114 samples and an additional external cohort of n = 104 CRC samples from the CPTAC database.
Results
With our multi-modal approach the AI model achieved an AUROC of 0.84 ± 0.02 and 0.67 ± 0.01 for BRAF/KRAS respectively on the TCGA hold-out test set. Accuracy levels were similar on the second external testing dataset (CPTAC) (AUROC of 0.82 ± 0.02 and 0.72 ± 0.01) indicating the model’s ability to generalize across different cohorts. Notably, accuracy values obtained with the multi-modal training setup were significantly higher than those from models that were trained with image data only (AUROCs (CPTAC): BRAF 0.73 +- 0.02, KRAS: 0.64 +- 0.03).
Conclusions
By analyzing mutations in two of the most frequently mutated genes in CRC in two separate cohorts, we demonstrate that the inclusion of patient parameters in AI training can provide added value for diagnostic accuracy of AI models that predict mutations from H&E images. Our results also support previous findings that some driver mutations can be more accurately predicted from tissue than others. Altogether, these results show the potential of multi-modal deep learning to bring predictive AI towards real-world application in pathology.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Mindpeak GmbH.
Funding
Mindpeak GmbH.
Disclosure
M. Päpper: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Stocks/Shares: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH. P. Frey: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH. T. Lang: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH; Financial Interests, Personal, Stocks or ownership: Mindpeak GmbH. All other authors have declared no conflicts of interest.
Resources from the same session
122P - Practice patterns and treatment outcomes of molecular tumour board (MTB)-based personalized cancer therapies: A single-center experience
Presenter: Florian Moik
Session: Poster session 08
123P - Pan-cancer homologous recombination deficiency (HRD) evaluation in patients enrolled in a routine molecular screening program
Presenter: Paula Romero-Lozano
Session: Poster session 08
124P - Incidence of activating frameshift and nonsense mutations in clinically actionable oncogenes
Presenter: Sjors Kas
Session: Poster session 08
125P - Comparison of microarray and next-generation sequencing-based approaches for detection of homologous recombination deficiency
Presenter: Caleb Kidwell
Session: Poster session 08
126P - Genomic landscape and prognostic impact of HER2 low-expressing tumors
Presenter: Aditya Shreenivas
Session: Poster session 08
127P - Clinical utility of circulating tumor DNA (ctDNA) next generation sequencing (NGS) to inform treatment decisions for patients (pts) with advanced solid tumors
Presenter: Diego Gomez Puerto
Session: Poster session 08
128P - Whole blood transcriptomics identifies transcriptional patterns linked to outcomes in patients receiving immune checkpoint inhibitors
Presenter: Sara Hone Lopez
Session: Poster session 08
129P - Integrating large data to unveil vulnerabilities for patients with hot tumors resistant to checkpoint inhibition
Presenter: Anlin Li
Session: Poster session 08
130P - Ipilimumab plus nivolumab (Ipi+Nivo) in patients with tumors harboring high tumor mutational burden or load (TMB/TML-H): Results from the Drug Rediscovery Protocol (DRUP)
Presenter: Soemeya Haj Mohammad
Session: Poster session 08
131P - Systemic immune-inflammation index and overall survival with checkpoint inhibitors
Presenter: Oliver Kennedy
Session: Poster session 08