Abstract 182P
Background
Mutations in the MAPK/ERK pathway are frequently found across cancer entities, including colorectal cancer (CRC) where the accurate diagnosis of KRAS and BRAF mutational status is pivotal for treatment decisions. While the mutation analysis is usually done via genomic sequencing, the prediction of mutations from histological images using artificial intelligence (AI) could present a faster alternative with broad potential for diagnostic routine, research applications, and trial recruitment. However, to date, such algorithms typically do not meet the required accuracy criteria for real-world application in different institutions.
Methods
Since the frequency of both BRAFmut and KRASmut is associated with easily available clinical patient parameters, we developed a multi-modal predictive AI model on n = 455 CRC cases from the TCGA database and UPenn. Besides patient data, the AI model uses the BRAFmut/KRASmut information and hematoxylin & eosin (H&E)-stained tissue images. We evaluated the model on an independent hold-out TCGA cohort of n = 114 samples and an additional external cohort of n = 104 CRC samples from the CPTAC database.
Results
With our multi-modal approach the AI model achieved an AUROC of 0.84 ± 0.02 and 0.67 ± 0.01 for BRAF/KRAS respectively on the TCGA hold-out test set. Accuracy levels were similar on the second external testing dataset (CPTAC) (AUROC of 0.82 ± 0.02 and 0.72 ± 0.01) indicating the model’s ability to generalize across different cohorts. Notably, accuracy values obtained with the multi-modal training setup were significantly higher than those from models that were trained with image data only (AUROCs (CPTAC): BRAF 0.73 +- 0.02, KRAS: 0.64 +- 0.03).
Conclusions
By analyzing mutations in two of the most frequently mutated genes in CRC in two separate cohorts, we demonstrate that the inclusion of patient parameters in AI training can provide added value for diagnostic accuracy of AI models that predict mutations from H&E images. Our results also support previous findings that some driver mutations can be more accurately predicted from tissue than others. Altogether, these results show the potential of multi-modal deep learning to bring predictive AI towards real-world application in pathology.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Mindpeak GmbH.
Funding
Mindpeak GmbH.
Disclosure
M. Päpper: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Stocks/Shares: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH. P. Frey: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH. T. Lang: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH; Financial Interests, Personal, Stocks or ownership: Mindpeak GmbH. All other authors have declared no conflicts of interest.
Resources from the same session
162P - Exploiting gp100-specific antibodies isolated from immune checkpoint inhibitor-responsive melanoma patients to target tumor cells
Presenter: Lukas Flatz
Session: Poster session 08
163P - Tumorspheres cultured from circulating cancer stem cells overexpress the innate checkpoint CD47 in breast cancer patients
Presenter: Monika Pizon
Session: Poster session 08
Resources:
Abstract
164P - A spatially informed transcriptomic model to forecast early resistance to front-line osimertinib in advanced EGFR-mutant NSCLC
Presenter: Jon Zugazagoitia
Session: Poster session 08
165P - Consistency analysis of c-Met protein expression over time in patients with non-squamous non-small cell lung cancer
Presenter: Alexis Cortot
Session: Poster session 08
166P - Integrative multi-omics refine molecular diagnostics in non-small cell lung cancer
Presenter: Li Ren Kong
Session: Poster session 08
167P - Tumor-immune spatial interactions on NSCLC H&E slide images predicts immunotherapy response: Preliminary external validation
Presenter: Liam Il-Young Chung
Session: Poster session 08
168P - Biosimulation coupled with personalized tumor microenvironment (TME) modeling predicts response to immunotherapy treatment in NSCLC patients
Presenter: Himanshu Grover
Session: Poster session 08
169P - Analysis of tumor immune microenvironment with mIHC in Chinese non-small cell lung cancer
Presenter: Hao Wu
Session: Poster session 08
170P - Clinical presentations and prognosis of HER2-low breast cancer in Taiwan
Presenter: Grace Chen
Session: Poster session 08
171P - A computational pathology collagen signature predictive of tamoxifen benefit in ductal carcinoma in situ: Results from a cohort within the UK/ANZ DCIS randomized trial
Presenter: Arpit Aggarwal
Session: Poster session 08