Abstract 182P
Background
Mutations in the MAPK/ERK pathway are frequently found across cancer entities, including colorectal cancer (CRC) where the accurate diagnosis of KRAS and BRAF mutational status is pivotal for treatment decisions. While the mutation analysis is usually done via genomic sequencing, the prediction of mutations from histological images using artificial intelligence (AI) could present a faster alternative with broad potential for diagnostic routine, research applications, and trial recruitment. However, to date, such algorithms typically do not meet the required accuracy criteria for real-world application in different institutions.
Methods
Since the frequency of both BRAFmut and KRASmut is associated with easily available clinical patient parameters, we developed a multi-modal predictive AI model on n = 455 CRC cases from the TCGA database and UPenn. Besides patient data, the AI model uses the BRAFmut/KRASmut information and hematoxylin & eosin (H&E)-stained tissue images. We evaluated the model on an independent hold-out TCGA cohort of n = 114 samples and an additional external cohort of n = 104 CRC samples from the CPTAC database.
Results
With our multi-modal approach the AI model achieved an AUROC of 0.84 ± 0.02 and 0.67 ± 0.01 for BRAF/KRAS respectively on the TCGA hold-out test set. Accuracy levels were similar on the second external testing dataset (CPTAC) (AUROC of 0.82 ± 0.02 and 0.72 ± 0.01) indicating the model’s ability to generalize across different cohorts. Notably, accuracy values obtained with the multi-modal training setup were significantly higher than those from models that were trained with image data only (AUROCs (CPTAC): BRAF 0.73 +- 0.02, KRAS: 0.64 +- 0.03).
Conclusions
By analyzing mutations in two of the most frequently mutated genes in CRC in two separate cohorts, we demonstrate that the inclusion of patient parameters in AI training can provide added value for diagnostic accuracy of AI models that predict mutations from H&E images. Our results also support previous findings that some driver mutations can be more accurately predicted from tissue than others. Altogether, these results show the potential of multi-modal deep learning to bring predictive AI towards real-world application in pathology.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Mindpeak GmbH.
Funding
Mindpeak GmbH.
Disclosure
M. Päpper: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Stocks/Shares: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH. P. Frey: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH. T. Lang: Financial Interests, Personal, Full or part-time Employment: Mindpeak GmbH; Financial Interests, Personal, Leadership Role: Mindpeak GmbH; Financial Interests, Personal, Stocks or ownership: Mindpeak GmbH. All other authors have declared no conflicts of interest.
Resources from the same session
172P - HER2 expression across solid tumors and real-world implications for use of fam-trastuzumab deruxtecan-nxki (T-Dxd)
Presenter: Ahmed Ismail
Session: Poster session 08
173P - Unveiling a novel EpCAM-CD24+ circulating cells with unidentified origin associated with breast cancer distant metastasis
Presenter: Evgeniya Grigoryeva
Session: Poster session 08
174P - Prognostic value of the immune and metabolic profile in the response to neoadjuvant treatment with ICIs in triple-negative breast cancer patients (TNBC)
Presenter: Lucía Serrano García
Session: Poster session 08
175P - Utility of artificial intelligence (AI) in Ki67 scoring of a breast cancer (BC) patient population
Presenter: Xavier Pichon
Session: Poster session 08
176P - ERBB2 amplifications across sex, race, and cancer types
Presenter: Marc Machaalani
Session: Poster session 08
177P - HER2 testing in multiple solid tumors: Concordance between 3 scoring algorithms
Presenter: Wentao Yang
Session: Poster session 08
178P - PD-L1 expression in ER-low versus triple-negative (TN) advanced breast cancer (aBC), and according to phenotypic evolution from primary to recurrent disease
Presenter: Federica Miglietta
Session: Poster session 08
179P - Multimodal deep learning integrating MRI and molecular profiles for predicting outcomes in triple-negative breast cancer
Presenter: Seong Hwan Park
Session: Poster session 08
181P - Molecular characterization and immune microenvironment analysis of MSI-H patients with or without MMR gene mutations
Presenter: Mengxi Ge
Session: Poster session 08