Abstract 1226P
Background
Molecular profiling of the human epidermal growth factor receptor 2 (HER2) is performed for all malignant breast cancers to inform the choice of HER2-targeted therapy. IHC and ISH are performed to establish HER2 status in standard clinical care. These tests are not only expensive and time-consuming, but also account for most of the turnaround time for diagnosis and require expert interpretation. Here, we demonstrate the effectiveness of PANProfiler Breast (HER2 Negative), a UKCA-marked deep learning (DL)-based image analysis software for HER2 profiling from whole slide images (WSIs) of routinely-used H&E-stained pathology slides.
Methods
A DL model was trained and validated on 1684 WSIs from two datasets to identify HER2-negative cases defined by IHC0, IHC1 or IHC2+/ISH-. A total of 2310 H&E images of breast cancer samples from five different sites in the UK and US were used for external validation. These images were acquired with four different scanners with each set containing a varying proportion of biopsies and resections. The model was evaluated separately for each site with 3-fold cross-validation and results were aggregated across folds. The performance was measured in comparison to HER2 status acquired via IHC and ISH in accordance with RCPath & CAP guidelines.
Results
Incidence rate for HER2-positive cases varied between 9-15% in the UK sites and was 64% for the US cohort. Overall accuracy across all sites was 93.06% (± 8.28%), reaching up to 97.99%. An average false negative rate (discordance to wet-lab assay) of 9.27% (± 0.47%) was achieved with a 100% specificity for all datasets. Performance was robust to specimen/scanner types, with accuracies of 96.46%, 95.39%, and 91.15% achieved in sites that contained only biopsies, only resections, and mixed types. Accuracy across scanners varied by a standard deviation of 9.25%.
Conclusions
We demonstrate the robustness of a DL-based HER2 profiling method in breast cancer utilising only H&E-stained WSIs. This multi-site validation study is the first-of its kind for such an approach using real-world clinical data. Our solution could facilitate fast, accurate, and systemic screening of patients for targeted treatments if integrated within the routine pathological workflows.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Panakeia Technologies Ltd., NHS, Innovate UK.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1203P - Role of tumor markers before or during chemotherapy for poorly differentiated neuroendocrine carcinomas of the digestive system: An exploratory analysis of JCOG1213
Presenter: Tomoyuki Satake
Session: Poster session 14
1204TiP - Iadademstat in combination with paclitaxel in relapsed/refractory small cell lung carcinoma (SCLC) and extrapulmonary high grade neuroendocrine carcinoma (NEC)
Presenter: Neel Belani
Session: Poster session 14
1212P - Predictive value of a near-term prediction model for severe irAEs in cancer treatment with ICIs
Presenter: Jun Zhao
Session: Poster session 14
1213P - HRD complete: A novel NGS assay for detecting homologous recombination repair (HRR) gene alterations in prostate cancer
Presenter: Xin Ye
Session: Poster session 14
1214P - A novel machine learning based method to detect homozygous deletion of homologous recombination repair (HRR) genes in prostate cancer
Presenter: Jianqing Wang
Session: Poster session 14
1215P - Comparative analysis of cfDNA liquid biopsy and tumor-based next-generation sequencing (NGS) approaches
Presenter: Anastasiya Yudina
Session: Poster session 14
1216P - A spectroscopic liquid biopsy for the earlier detection of multiple cancer types
Presenter: Matthew Baker
Session: Poster session 14
1217P - Clinical evaluation of a CE-IVD liquid biopsy pan cancer genomic profiling test
Presenter: Timothy Crook
Session: Poster session 14
1218P - Exploring cancer care pathways in seven European countries: Identifying obstacles and opportunities for the role of artificial intelligence
Presenter: Shereen Nabhani
Session: Poster session 14