Abstract 1212P
Background
Severe irAEs caused by ICIs affect treatment efficacy and benefit. Current research on irAEs is mainly focused on early prediction, with a lack of near-term prediction. Studies have reported that baseline neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and absolute eosinophil count (AEC) can predict irAEs. Our aim is to explore the near-term predictive value of NLR, PLR, and AEC for grade 3 or higher irAEs caused by PD-1 inhibitors.
Methods
Data were collected from cancer patients treated with PD-1 inhibitors in our department from January 2020 to May 2022. NLR, PLR, and AEC data were collected one cycle before and during the occurrence of irAEs (median cycle number was 2nd and 3rd cycles, respectively). Logistic analysis was used to analyze the correlation between NLR, PLR, AEC, and irAEs, and to construct a prediction model. The model's performance was assessed by obtaining sensitivity and specificity through the ROC.
Results
Out of the 138 cancer patients, 47 experienced grade 1-2 irAEs, and 18 had grade 3 or higher irAEs (including 2 fatal irAEs). Multivariate analysis showed that the current cycle's NLR (OR, 1.839, p=0.000) and PLR (OR, 0.994, p=0.029) were independent risk factors for irAEs. Model A predicted the occurrence of irAEs in the next cycle with an area under the curve (AUC) of 0.788, a sensitivity of 69.2%, and a specificity of 68.5%. When the Model A was ≥38.8% (cutoff value), Model B (AUC =0.900) was entered, predicting the occurrence of grade 3 or higher irAEs in the next cycle with a sensitivity of 67.7% and a specificity of 72.6%. Similarly, Model C predicted the occurrence of irAEs in the current cycle (AUC=0.865) yielded a sensitivity of 81.5% and a specificity of 86.3%. When the Model C was ≥52.8%, Model D was entered, predicting the occurrence of grade 3 or higher irAEs in the current cycle (AUC=0.888) with a sensitivity of 83.3% and a specificity of 83.0%.
Conclusions
The model consisting of NLR, PLR, and AEC in this study can predict the occurrence of grade 3 or higher irAEs within one cycle. Compared with early prediction, our near-term prediction model maximizes the number of cycles of immune therapy obtained by patients, thereby improving the effectiveness of immunotherapy, which has significant clinical value.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1203P - Role of tumor markers before or during chemotherapy for poorly differentiated neuroendocrine carcinomas of the digestive system: An exploratory analysis of JCOG1213
Presenter: Tomoyuki Satake
Session: Poster session 14
1204TiP - Iadademstat in combination with paclitaxel in relapsed/refractory small cell lung carcinoma (SCLC) and extrapulmonary high grade neuroendocrine carcinoma (NEC)
Presenter: Neel Belani
Session: Poster session 14
1213P - HRD complete: A novel NGS assay for detecting homologous recombination repair (HRR) gene alterations in prostate cancer
Presenter: Xin Ye
Session: Poster session 14
1214P - A novel machine learning based method to detect homozygous deletion of homologous recombination repair (HRR) genes in prostate cancer
Presenter: Jianqing Wang
Session: Poster session 14
1215P - Comparative analysis of cfDNA liquid biopsy and tumor-based next-generation sequencing (NGS) approaches
Presenter: Anastasiya Yudina
Session: Poster session 14
1216P - A spectroscopic liquid biopsy for the earlier detection of multiple cancer types
Presenter: Matthew Baker
Session: Poster session 14
1217P - Clinical evaluation of a CE-IVD liquid biopsy pan cancer genomic profiling test
Presenter: Timothy Crook
Session: Poster session 14
1218P - Exploring cancer care pathways in seven European countries: Identifying obstacles and opportunities for the role of artificial intelligence
Presenter: Shereen Nabhani
Session: Poster session 14
1219P - Artificial intelligence-based breast cancer detection facilitates automated prognosis marker assessment using multiplex fluorescence immunohistochemistry
Presenter: Tim Mandelkow
Session: Poster session 14