Abstract 1226P
Background
Molecular profiling of the human epidermal growth factor receptor 2 (HER2) is performed for all malignant breast cancers to inform the choice of HER2-targeted therapy. IHC and ISH are performed to establish HER2 status in standard clinical care. These tests are not only expensive and time-consuming, but also account for most of the turnaround time for diagnosis and require expert interpretation. Here, we demonstrate the effectiveness of PANProfiler Breast (HER2 Negative), a UKCA-marked deep learning (DL)-based image analysis software for HER2 profiling from whole slide images (WSIs) of routinely-used H&E-stained pathology slides.
Methods
A DL model was trained and validated on 1684 WSIs from two datasets to identify HER2-negative cases defined by IHC0, IHC1 or IHC2+/ISH-. A total of 2310 H&E images of breast cancer samples from five different sites in the UK and US were used for external validation. These images were acquired with four different scanners with each set containing a varying proportion of biopsies and resections. The model was evaluated separately for each site with 3-fold cross-validation and results were aggregated across folds. The performance was measured in comparison to HER2 status acquired via IHC and ISH in accordance with RCPath & CAP guidelines.
Results
Incidence rate for HER2-positive cases varied between 9-15% in the UK sites and was 64% for the US cohort. Overall accuracy across all sites was 93.06% (± 8.28%), reaching up to 97.99%. An average false negative rate (discordance to wet-lab assay) of 9.27% (± 0.47%) was achieved with a 100% specificity for all datasets. Performance was robust to specimen/scanner types, with accuracies of 96.46%, 95.39%, and 91.15% achieved in sites that contained only biopsies, only resections, and mixed types. Accuracy across scanners varied by a standard deviation of 9.25%.
Conclusions
We demonstrate the robustness of a DL-based HER2 profiling method in breast cancer utilising only H&E-stained WSIs. This multi-site validation study is the first-of its kind for such an approach using real-world clinical data. Our solution could facilitate fast, accurate, and systemic screening of patients for targeted treatments if integrated within the routine pathological workflows.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Panakeia Technologies Ltd., NHS, Innovate UK.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1219P - Artificial intelligence-based breast cancer detection facilitates automated prognosis marker assessment using multiplex fluorescence immunohistochemistry
Presenter: Tim Mandelkow
Session: Poster session 14
1220P - Comprehensive diagnose of programmed death-ligand 1 from two-dimensional to three-dimensional in breast cancer with computer-aided artificial intelligence system
Presenter: Yi-Hsuan Lee
Session: Poster session 14
1221P - The functional domain of BRCA1/2 pathogenic variants (PVs) as potential biomarkers of second tumor and domain-related sensitivity to PARP-inhibitors
Presenter: Lorena Incorvaia
Session: Poster session 14
1222P - Detection of androgen-receptor splice variant 7 messenger RNA in circulating tumor cells of prostate cancer by in vitro assay
Presenter: Hoin Kang
Session: Poster session 14
1223P - Homologous recombination deficiency (HRD) testing on ovarian cancer ascites: A feasibility study
Presenter: Alberto Ranghiero
Session: Poster session 14
1224P - Detection of circulating tumor DNA (ctDNA) in untreated patients (pts) with cancer: Implications for early cancer detection (ECD)
Presenter: Yoshiaki Nakamura
Session: Poster session 14
1225P - Combining ctDNA and tissue-based-genomic profiling in advanced cancer: A real-world evidence prospective study in non-Western patients treated at Gustave Roussy cancer campus
Presenter: Tony Ibrahim
Session: Poster session 14
1227P - Novel in vivo photonics-immunoassay system, inPROBE, for the rapid detection of HER2 in breast cancer
Presenter: Magdalena Staniszewska
Session: Poster session 14
1228P - A circulating tumor cell (CTC) based assay for diagnostic immunocytochemistry profiling of lung cancer
Presenter: Nitesh Rohatgi
Session: Poster session 14
1229P - Selective phenotypic and genotypic evaluation of circulating glial cells for improved diagnosis of glial malignancies
Presenter: Sewanti Limaye
Session: Poster session 14