Abstract 1226P
Background
Molecular profiling of the human epidermal growth factor receptor 2 (HER2) is performed for all malignant breast cancers to inform the choice of HER2-targeted therapy. IHC and ISH are performed to establish HER2 status in standard clinical care. These tests are not only expensive and time-consuming, but also account for most of the turnaround time for diagnosis and require expert interpretation. Here, we demonstrate the effectiveness of PANProfiler Breast (HER2 Negative), a UKCA-marked deep learning (DL)-based image analysis software for HER2 profiling from whole slide images (WSIs) of routinely-used H&E-stained pathology slides.
Methods
A DL model was trained and validated on 1684 WSIs from two datasets to identify HER2-negative cases defined by IHC0, IHC1 or IHC2+/ISH-. A total of 2310 H&E images of breast cancer samples from five different sites in the UK and US were used for external validation. These images were acquired with four different scanners with each set containing a varying proportion of biopsies and resections. The model was evaluated separately for each site with 3-fold cross-validation and results were aggregated across folds. The performance was measured in comparison to HER2 status acquired via IHC and ISH in accordance with RCPath & CAP guidelines.
Results
Incidence rate for HER2-positive cases varied between 9-15% in the UK sites and was 64% for the US cohort. Overall accuracy across all sites was 93.06% (± 8.28%), reaching up to 97.99%. An average false negative rate (discordance to wet-lab assay) of 9.27% (± 0.47%) was achieved with a 100% specificity for all datasets. Performance was robust to specimen/scanner types, with accuracies of 96.46%, 95.39%, and 91.15% achieved in sites that contained only biopsies, only resections, and mixed types. Accuracy across scanners varied by a standard deviation of 9.25%.
Conclusions
We demonstrate the robustness of a DL-based HER2 profiling method in breast cancer utilising only H&E-stained WSIs. This multi-site validation study is the first-of its kind for such an approach using real-world clinical data. Our solution could facilitate fast, accurate, and systemic screening of patients for targeted treatments if integrated within the routine pathological workflows.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Panakeia Technologies Ltd., NHS, Innovate UK.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1230P - hPG80 (circulating progastrin) is a new blood-based biomarker for diagnosis of early-stage non-small cell lung cancers
Presenter: Paul Hofman
Session: Poster session 14
1231P - Machine learning prediction of the case-fatality of COVID-19 and risk factors for adverse outcomes in patients with non-small cell lung cancer
Presenter: Yeji Jung
Session: Poster session 14
1232P - Analytic analysis of PanSeer7, a targeted bisulfite sequencing assay for blood-based multi-cancer detection for cancer early detection and tissue-of-origin identification
Presenter: Xinrong Yang
Session: Poster session 14
1233P - Accurate prediction of gastrointestinal cancer tissue of origin using comprehensive plasma cell-free DNA fragmentomics features
Presenter: Xinrong Yang
Session: Poster session 14
1234P - HistoMate: Automated preprocessing software for digital histopathology image to enhance deep learning
Presenter: Jinok Lee
Session: Poster session 14
1235P - Enrichment of rare cancers in pragmatic precision cancer medicine trial: Experience from IMPRESS-Norway
Presenter: Aaslaug Helland
Session: Poster session 14
1236P - Feasibility of online symptom monitoring to detect lung cancer relapse in Poland
Presenter: Ewa Pawlowska
Session: Poster session 14
1237P - Design and validation of a custom next-generation sequencing panel in melanoma, glioma and gastrointestinal stromal tumor
Presenter: Xiaoyan Zhou
Session: Poster session 14
1238P - Detecting driver mutations by AmoyDx 11-gene PCR with high concordance with next-generation sequencing in Chinese non-small cell lung cancer patients
Presenter: Dongmei Lin
Session: Poster session 14
1239P - NHS-Galleri trial enrolment approaches and participant sociodemographic diversity
Presenter: Charles Swanton
Session: Poster session 14