Abstract 1226P
Background
Molecular profiling of the human epidermal growth factor receptor 2 (HER2) is performed for all malignant breast cancers to inform the choice of HER2-targeted therapy. IHC and ISH are performed to establish HER2 status in standard clinical care. These tests are not only expensive and time-consuming, but also account for most of the turnaround time for diagnosis and require expert interpretation. Here, we demonstrate the effectiveness of PANProfiler Breast (HER2 Negative), a UKCA-marked deep learning (DL)-based image analysis software for HER2 profiling from whole slide images (WSIs) of routinely-used H&E-stained pathology slides.
Methods
A DL model was trained and validated on 1684 WSIs from two datasets to identify HER2-negative cases defined by IHC0, IHC1 or IHC2+/ISH-. A total of 2310 H&E images of breast cancer samples from five different sites in the UK and US were used for external validation. These images were acquired with four different scanners with each set containing a varying proportion of biopsies and resections. The model was evaluated separately for each site with 3-fold cross-validation and results were aggregated across folds. The performance was measured in comparison to HER2 status acquired via IHC and ISH in accordance with RCPath & CAP guidelines.
Results
Incidence rate for HER2-positive cases varied between 9-15% in the UK sites and was 64% for the US cohort. Overall accuracy across all sites was 93.06% (± 8.28%), reaching up to 97.99%. An average false negative rate (discordance to wet-lab assay) of 9.27% (± 0.47%) was achieved with a 100% specificity for all datasets. Performance was robust to specimen/scanner types, with accuracies of 96.46%, 95.39%, and 91.15% achieved in sites that contained only biopsies, only resections, and mixed types. Accuracy across scanners varied by a standard deviation of 9.25%.
Conclusions
We demonstrate the robustness of a DL-based HER2 profiling method in breast cancer utilising only H&E-stained WSIs. This multi-site validation study is the first-of its kind for such an approach using real-world clinical data. Our solution could facilitate fast, accurate, and systemic screening of patients for targeted treatments if integrated within the routine pathological workflows.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Panakeia Technologies Ltd., NHS, Innovate UK.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1241P - Decoding the glycan code: Pioneering early detection of non-small cell lung cancer through glycoproteomics
Presenter: Kai He
Session: Poster session 14
1242P - Implementing functional precision oncology in real-world patients: Translating extensive in vitro data into personalized treatment combining genetics and functional assays
Presenter: Dörthe Schaffrin-Nabe
Session: Poster session 14
1243P - Ocular surface squamous neoplasia early diagnosis using an AI-empowered autofluorescence multispectral imaging technique
Presenter: Abbas HABIBALAHI
Session: Poster session 14
1244P - AI-based accurate PD-L1 IHC assessment in non-small cell lung cancer across multiple sites and scanners
Presenter: Ramona Erber
Session: Poster session 14
1245P - A lymph nodal staging assessment model for various histologic types of small intestinal tumors
Presenter: YOUSHENG LI
Session: Poster session 14
1246P - Detection of alternative lengthening of telomeres (ALT) across cancer types based on tumor-normal multigene panel sequencing
Presenter: Juan Blanco Heredia
Session: Poster session 14
1247P - A detection model for EGFR mutations in lung adenocarcinoma patients based on volatile organic compounds
Presenter: Yunpeng Yang
Session: Poster session 14
1248P - Development of a high performance and noninvasive diagnostic model using blood cell-free microRNAs for multi-cancer early detection
Presenter: Jason Zhang
Session: Poster session 14
1249P - Whole genome sequencing-based cancer diagnostics in routine clinical practice: An interim analysis of two years of real-world data
Presenter: Jeffrey van Putten
Session: Poster session 14
1250P - Assessing lung carcinoma: A retrospective study on volume evaluation, consolidation and infiltration using chest OMX
Presenter: Swarnambiga Ayyachamy
Session: Poster session 14