Abstract 1218P
Background
Cancer is considered a leading cause of mortality and morbidity worldwide. This study constitutes one part of the user requirement definition of INCISIVE EU project. The project has been designed to explore the full potential of artificial intelligence (AI)-based technologies in cancer imaging. The study aimed to map cancer care pathways (breast, prostate, colorectal and lung cancers) across INCISIVE partner countries, and identify obstacles within these pathways.
Methods
A qualitative research approach employing email interviews was used. A purposive sampling strategy was employed to recruit ten oncology specialised healthcare professionals from INCISIVE partner countries: Greece, Cyprus, Spain, Italy, Finland, United Kingdom (UK) and Serbia. Data was collected between December 2020 and April 2021. Data was entered into Microsoft Excel spreadsheet to allow content and comparative analysis. Appropriate ethical approval was obtained for this study.
Results
Delays in the diagnosis and treatment of cancer was evident from all the pathways studied. With the exception of the UK, none of the countries studied had official national data regarding delays in cancer diagnosis and treatment. There was a considerable variation in the availability of imaging and diagnostic services across the seven countries that were analysed. Several concerns were also noted for national screening for the four investigated cancer types.
Conclusions
Delays in the diagnosis and treatment of cancer remain challenging issues that need to be addressed. To effectively address these challenges, it is crucial to have a systematic reporting of diagnostic and therapeutic delays in all countries. Proper estimation of the magnitude of the problem is essential, as no problem can be effectively tackled without an accurate understanding of its magnitude. Our findings also support the orientation of the current policies towards early detection and wide scale adoption and implementation of cancer screening, through research, innovation, and technology. Technologies involving AI can have a great potential to revolutionise cancer care delivery.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
INCISIVE Consortium.
Funding
EU Horizion 2020.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1203P - Role of tumor markers before or during chemotherapy for poorly differentiated neuroendocrine carcinomas of the digestive system: An exploratory analysis of JCOG1213
Presenter: Tomoyuki Satake
Session: Poster session 14
1204TiP - Iadademstat in combination with paclitaxel in relapsed/refractory small cell lung carcinoma (SCLC) and extrapulmonary high grade neuroendocrine carcinoma (NEC)
Presenter: Neel Belani
Session: Poster session 14
1212P - Predictive value of a near-term prediction model for severe irAEs in cancer treatment with ICIs
Presenter: Jun Zhao
Session: Poster session 14
1213P - HRD complete: A novel NGS assay for detecting homologous recombination repair (HRR) gene alterations in prostate cancer
Presenter: Xin Ye
Session: Poster session 14
1214P - A novel machine learning based method to detect homozygous deletion of homologous recombination repair (HRR) genes in prostate cancer
Presenter: Jianqing Wang
Session: Poster session 14
1215P - Comparative analysis of cfDNA liquid biopsy and tumor-based next-generation sequencing (NGS) approaches
Presenter: Anastasiya Yudina
Session: Poster session 14
1216P - A spectroscopic liquid biopsy for the earlier detection of multiple cancer types
Presenter: Matthew Baker
Session: Poster session 14
1217P - Clinical evaluation of a CE-IVD liquid biopsy pan cancer genomic profiling test
Presenter: Timothy Crook
Session: Poster session 14
1219P - Artificial intelligence-based breast cancer detection facilitates automated prognosis marker assessment using multiplex fluorescence immunohistochemistry
Presenter: Tim Mandelkow
Session: Poster session 14