Abstract 1258P
Background
Machine-learning and radiomics are promising approaches to improve the clinical management of NSCLC. However the additive value of FDG-PET based radiomic compared to clinical and standard imaging variables is less investigated. We aimed to assess the prognostic role of combined use of machine-learning and radiomics in NSCLC patients.
Methods
320 NSCLC patients underwent PET/CT with FDG at initial staging. Forty-nine predictors, including 43 textural features extracted from PET studies, SUVmax,MTV, TLG, TNM tumor stage, age and gender were analyzed. A least absolute shrinkage and selection operator (LASSO) regression was used to select features with highest predictive value. Cox's multivariate regression analysis was used to calculate individual risk scores. We divided patients into high-risk and low-risk groups using the median risk score of each prediction model. Kaplan-Meier and log-rank test were used to compare overall survival (OS) of high- and low-risk patients.
Results
Five variables including one textural feature (NGTDM_Coarseness), SUVmax and tumor stage (stage II, stage III, stage IV) showed highest predictive value at LASSO regression analysis. These variables were used to create a LASSO model (tumor stage, SUVmax and NGTDM_Coarseness) which was compared to a reference model (tumor stage, SUVmax). After a median follow-up time of 35 months, 61.6% of patients were deceased. The LASSO model classified 70% deceased and 81% alive as high- and low-risk patients respectively (Odd Ratio(OR)=[9.9, Confidence Interval(CI)=5.8,17.1]). The reference model classified 70% deceased and 82% alive as high- and low-risk patients respectively (OR=[10.7, CI=6.2,18.7]). Kaplan-Meier curves showed that both the reference model and the LASSO model significantly predicted shorter OS in the high-risk group, without any significant model difference: median OS in the high-risk group was 15 months (95%CI, 11-18) for both models while median OS was not reached in the low-risk group for both models.
Conclusions
These data indicate that radiomics does not significantly improve the prediction of outcome based on disease stage and SUVmax. Morover, the SUVmax used with the stage improves the accuracy of the stage alone based prediction.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Andrea Ciarmiello.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1239P - NHS-Galleri trial enrolment approaches and participant sociodemographic diversity
Presenter: Charles Swanton
Session: Poster session 14
1241P - Decoding the glycan code: Pioneering early detection of non-small cell lung cancer through glycoproteomics
Presenter: Kai He
Session: Poster session 14
1242P - Implementing functional precision oncology in real-world patients: Translating extensive in vitro data into personalized treatment combining genetics and functional assays
Presenter: Dörthe Schaffrin-Nabe
Session: Poster session 14
1243P - Ocular surface squamous neoplasia early diagnosis using an AI-empowered autofluorescence multispectral imaging technique
Presenter: Abbas HABIBALAHI
Session: Poster session 14
1244P - AI-based accurate PD-L1 IHC assessment in non-small cell lung cancer across multiple sites and scanners
Presenter: Ramona Erber
Session: Poster session 14
1245P - A lymph nodal staging assessment model for various histologic types of small intestinal tumors
Presenter: YOUSHENG LI
Session: Poster session 14
1246P - Detection of alternative lengthening of telomeres (ALT) across cancer types based on tumor-normal multigene panel sequencing
Presenter: Juan Blanco Heredia
Session: Poster session 14
1247P - A detection model for EGFR mutations in lung adenocarcinoma patients based on volatile organic compounds
Presenter: Yunpeng Yang
Session: Poster session 14
1248P - Development of a high performance and noninvasive diagnostic model using blood cell-free microRNAs for multi-cancer early detection
Presenter: Jason Zhang
Session: Poster session 14
1249P - Whole genome sequencing-based cancer diagnostics in routine clinical practice: An interim analysis of two years of real-world data
Presenter: Jeffrey van Putten
Session: Poster session 14