Abstract 1243P
Background
Ocular surface squamous neoplasia (OSSN) is a common eye surface neoplastic disease ranging from non-invasive conjunctival intraepithelial neoplasia (CIN) to invasive forms of squamous cell carcinoma (SCC) that accounts for approximately 10% of ocular surface lesions. Early detection of OSSN is crucial for effective treatment. However, clinical symptoms of OSSN vary, which can result in delayed or inappropriate diagnosis without appropriate diagnostic methods. Currently, the diagnosis of OSSN relies on clinical suspicion confirmed by impression cytology or biopsy, which are invasive and may not detect small lesions. This study aims to introduce an artificial intelligence data analysis framework to empower a newly designed autofluorescence hyperspectral imaging technology developed in our group for OSSN detection.
Methods
We recruited 20 patients who had previously been diagnosed with OSSN. Biopsy specimens were collected from the patients and reprocessed without staining to obtain autofluorescence microscopy images using 25 spectral channels, each with a distinctive excitation-emission wavelength. The spectral images were pre-processed to remove unwanted random noise and then spectral features were extracted from the epithelial section of tissue images. Further, the spectral features were used to form an artificial feature image patch to train a convolutional neural network for image classification.
Results
The technique was evaluated against pathological assessment, and results showed the multispectral analysis was able to detect OSSN in all tested patients (P-value < 0.05). The trained classifier on OSSN and normal sections was found to have great performance (AUC > 83%). The maps produced by the analysis were in close agreement with margins observed in H&E sections. The fully automated diagnostic method based on AI methodology produced maps of the neoplastic-non neoplastic interface that could be generated in quasi-real time and used for intraoperative assessment.
Conclusions
The study demonstrated the feasibility of using AI empowered hyperspectral autofluorescence imaging to detect OSSN and the potential for the technique to be used as a diagnostic tool in future clinical applications.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Cancer Institute NSW.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1203P - Role of tumor markers before or during chemotherapy for poorly differentiated neuroendocrine carcinomas of the digestive system: An exploratory analysis of JCOG1213
Presenter: Tomoyuki Satake
Session: Poster session 14
1204TiP - Iadademstat in combination with paclitaxel in relapsed/refractory small cell lung carcinoma (SCLC) and extrapulmonary high grade neuroendocrine carcinoma (NEC)
Presenter: Neel Belani
Session: Poster session 14
1212P - Predictive value of a near-term prediction model for severe irAEs in cancer treatment with ICIs
Presenter: Jun Zhao
Session: Poster session 14
1213P - HRD complete: A novel NGS assay for detecting homologous recombination repair (HRR) gene alterations in prostate cancer
Presenter: Xin Ye
Session: Poster session 14
1214P - A novel machine learning based method to detect homozygous deletion of homologous recombination repair (HRR) genes in prostate cancer
Presenter: Jianqing Wang
Session: Poster session 14
1215P - Comparative analysis of cfDNA liquid biopsy and tumor-based next-generation sequencing (NGS) approaches
Presenter: Anastasiya Yudina
Session: Poster session 14
1216P - A spectroscopic liquid biopsy for the earlier detection of multiple cancer types
Presenter: Matthew Baker
Session: Poster session 14
1217P - Clinical evaluation of a CE-IVD liquid biopsy pan cancer genomic profiling test
Presenter: Timothy Crook
Session: Poster session 14
1218P - Exploring cancer care pathways in seven European countries: Identifying obstacles and opportunities for the role of artificial intelligence
Presenter: Shereen Nabhani
Session: Poster session 14