Abstract 1258P
Background
Machine-learning and radiomics are promising approaches to improve the clinical management of NSCLC. However the additive value of FDG-PET based radiomic compared to clinical and standard imaging variables is less investigated. We aimed to assess the prognostic role of combined use of machine-learning and radiomics in NSCLC patients.
Methods
320 NSCLC patients underwent PET/CT with FDG at initial staging. Forty-nine predictors, including 43 textural features extracted from PET studies, SUVmax,MTV, TLG, TNM tumor stage, age and gender were analyzed. A least absolute shrinkage and selection operator (LASSO) regression was used to select features with highest predictive value. Cox's multivariate regression analysis was used to calculate individual risk scores. We divided patients into high-risk and low-risk groups using the median risk score of each prediction model. Kaplan-Meier and log-rank test were used to compare overall survival (OS) of high- and low-risk patients.
Results
Five variables including one textural feature (NGTDM_Coarseness), SUVmax and tumor stage (stage II, stage III, stage IV) showed highest predictive value at LASSO regression analysis. These variables were used to create a LASSO model (tumor stage, SUVmax and NGTDM_Coarseness) which was compared to a reference model (tumor stage, SUVmax). After a median follow-up time of 35 months, 61.6% of patients were deceased. The LASSO model classified 70% deceased and 81% alive as high- and low-risk patients respectively (Odd Ratio(OR)=[9.9, Confidence Interval(CI)=5.8,17.1]). The reference model classified 70% deceased and 82% alive as high- and low-risk patients respectively (OR=[10.7, CI=6.2,18.7]). Kaplan-Meier curves showed that both the reference model and the LASSO model significantly predicted shorter OS in the high-risk group, without any significant model difference: median OS in the high-risk group was 15 months (95%CI, 11-18) for both models while median OS was not reached in the low-risk group for both models.
Conclusions
These data indicate that radiomics does not significantly improve the prediction of outcome based on disease stage and SUVmax. Morover, the SUVmax used with the stage improves the accuracy of the stage alone based prediction.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Andrea Ciarmiello.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1774P - PC-PEP, a comprehensive daily six-month home-based prostate cancer: Patient empowerment program improves quality of life, physical fitness, and urinary function outcomes among prostate cancer patients with localized disease - Secondary analyses of a randomized clinical trial
Presenter: Gabriela Ilie
Session: Poster session 14
1775P - A newly-developed deep-learning algorithm: NAFNet outperforms ResNet50 for predicting adverse pathology events and biochemical recurrence time using MRI from prostate cancer patients
Presenter: Zheng Liu
Session: Poster session 14
1776P - Body composition in adult life and prostate cancer (PCa) incidence and mortality: The PROCA-life study
Presenter: Martin Støyten
Session: Poster session 14
1777P - Enzalutamide (enza) monotherapy for the treatment (tx) of prostate cancer with high-risk biochemical recurrence (BCR): EMBARK secondary endpoints
Presenter: Ugo De Giorgi
Session: Poster session 14
1778P - Treatment (tx) of high-risk biochemically recurrent prostate cancer with enzalutamide (enza) in combination with leuprolide acetate (LA): Secondary endpoints from EMBARK
Presenter: Stephen Freedland
Session: Poster session 14
1779P - PSMA guided approach for bIoCHEmical relapse after prostatectomy-PSICHE trial
Presenter: Giulio Francolini
Session: Poster session 14
1780P - The health inequality impact of darolutamide for non-metastatic castration-resistant prostate cancer: A distributional cost-effectiveness analysis
Presenter: Jeroen Jansen
Session: Poster session 14
1782P - Prostate radiotherapy reduces long-term risk of obstructive uropathy in metastatic hormone sensitive prostate cancer (mHSPC): Results from the STAMPEDE M1|RT comparison
Presenter: Craig Jones
Session: Poster session 14
1783P - PROSTRATEGY: A SOGUG randomized trial of androgen deprivation therapy (ADT) plus docetaxel (dct) +/- nivolumab (nivo) or ipilimumab-nivolumab (ipi-nivo) in high-volume metastatic hormone-sensitive prostate cancer (hvHSPCa) - Efficacy results from the pilot phase
Presenter: Jose Arranz Arija
Session: Poster session 14