Abstract 1258P
Background
Machine-learning and radiomics are promising approaches to improve the clinical management of NSCLC. However the additive value of FDG-PET based radiomic compared to clinical and standard imaging variables is less investigated. We aimed to assess the prognostic role of combined use of machine-learning and radiomics in NSCLC patients.
Methods
320 NSCLC patients underwent PET/CT with FDG at initial staging. Forty-nine predictors, including 43 textural features extracted from PET studies, SUVmax,MTV, TLG, TNM tumor stage, age and gender were analyzed. A least absolute shrinkage and selection operator (LASSO) regression was used to select features with highest predictive value. Cox's multivariate regression analysis was used to calculate individual risk scores. We divided patients into high-risk and low-risk groups using the median risk score of each prediction model. Kaplan-Meier and log-rank test were used to compare overall survival (OS) of high- and low-risk patients.
Results
Five variables including one textural feature (NGTDM_Coarseness), SUVmax and tumor stage (stage II, stage III, stage IV) showed highest predictive value at LASSO regression analysis. These variables were used to create a LASSO model (tumor stage, SUVmax and NGTDM_Coarseness) which was compared to a reference model (tumor stage, SUVmax). After a median follow-up time of 35 months, 61.6% of patients were deceased. The LASSO model classified 70% deceased and 81% alive as high- and low-risk patients respectively (Odd Ratio(OR)=[9.9, Confidence Interval(CI)=5.8,17.1]). The reference model classified 70% deceased and 82% alive as high- and low-risk patients respectively (OR=[10.7, CI=6.2,18.7]). Kaplan-Meier curves showed that both the reference model and the LASSO model significantly predicted shorter OS in the high-risk group, without any significant model difference: median OS in the high-risk group was 15 months (95%CI, 11-18) for both models while median OS was not reached in the low-risk group for both models.
Conclusions
These data indicate that radiomics does not significantly improve the prediction of outcome based on disease stage and SUVmax. Morover, the SUVmax used with the stage improves the accuracy of the stage alone based prediction.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Andrea Ciarmiello.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1229P - Selective phenotypic and genotypic evaluation of circulating glial cells for improved diagnosis of glial malignancies
Presenter: Sewanti Limaye
Session: Poster session 14
1230P - hPG80 (circulating progastrin) is a new blood-based biomarker for diagnosis of early-stage non-small cell lung cancers
Presenter: Paul Hofman
Session: Poster session 14
1231P - Machine learning prediction of the case-fatality of COVID-19 and risk factors for adverse outcomes in patients with non-small cell lung cancer
Presenter: Yeji Jung
Session: Poster session 14
1232P - Analytic analysis of PanSeer7, a targeted bisulfite sequencing assay for blood-based multi-cancer detection for cancer early detection and tissue-of-origin identification
Presenter: Xinrong Yang
Session: Poster session 14
1233P - Accurate prediction of gastrointestinal cancer tissue of origin using comprehensive plasma cell-free DNA fragmentomics features
Presenter: Xinrong Yang
Session: Poster session 14
1234P - HistoMate: Automated preprocessing software for digital histopathology image to enhance deep learning
Presenter: Jinok Lee
Session: Poster session 14
1235P - Enrichment of rare cancers in pragmatic precision cancer medicine trial: Experience from IMPRESS-Norway
Presenter: Aaslaug Helland
Session: Poster session 14
1236P - Feasibility of online symptom monitoring to detect lung cancer relapse in Poland
Presenter: Ewa Pawlowska
Session: Poster session 14
1237P - Design and validation of a custom next-generation sequencing panel in melanoma, glioma and gastrointestinal stromal tumor
Presenter: Xiaoyan Zhou
Session: Poster session 14
1238P - Detecting driver mutations by AmoyDx 11-gene PCR with high concordance with next-generation sequencing in Chinese non-small cell lung cancer patients
Presenter: Dongmei Lin
Session: Poster session 14