Abstract 1258P
Background
Machine-learning and radiomics are promising approaches to improve the clinical management of NSCLC. However the additive value of FDG-PET based radiomic compared to clinical and standard imaging variables is less investigated. We aimed to assess the prognostic role of combined use of machine-learning and radiomics in NSCLC patients.
Methods
320 NSCLC patients underwent PET/CT with FDG at initial staging. Forty-nine predictors, including 43 textural features extracted from PET studies, SUVmax,MTV, TLG, TNM tumor stage, age and gender were analyzed. A least absolute shrinkage and selection operator (LASSO) regression was used to select features with highest predictive value. Cox's multivariate regression analysis was used to calculate individual risk scores. We divided patients into high-risk and low-risk groups using the median risk score of each prediction model. Kaplan-Meier and log-rank test were used to compare overall survival (OS) of high- and low-risk patients.
Results
Five variables including one textural feature (NGTDM_Coarseness), SUVmax and tumor stage (stage II, stage III, stage IV) showed highest predictive value at LASSO regression analysis. These variables were used to create a LASSO model (tumor stage, SUVmax and NGTDM_Coarseness) which was compared to a reference model (tumor stage, SUVmax). After a median follow-up time of 35 months, 61.6% of patients were deceased. The LASSO model classified 70% deceased and 81% alive as high- and low-risk patients respectively (Odd Ratio(OR)=[9.9, Confidence Interval(CI)=5.8,17.1]). The reference model classified 70% deceased and 82% alive as high- and low-risk patients respectively (OR=[10.7, CI=6.2,18.7]). Kaplan-Meier curves showed that both the reference model and the LASSO model significantly predicted shorter OS in the high-risk group, without any significant model difference: median OS in the high-risk group was 15 months (95%CI, 11-18) for both models while median OS was not reached in the low-risk group for both models.
Conclusions
These data indicate that radiomics does not significantly improve the prediction of outcome based on disease stage and SUVmax. Morover, the SUVmax used with the stage improves the accuracy of the stage alone based prediction.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Andrea Ciarmiello.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1794P - Prognostic role of metastatic site in patients with de novo metastatic prostate cancer: A population-based analysis in new hormonal agents era
Presenter: Emre Yekeduz
Session: Poster session 14
1795P - China ARCHES: A multicenter phase III randomized double-blind placebo (PBO)-controlled efficacy and safety trial of enzalutamide (ENZA) + androgen deprivation therapy (ADT) vs PBO + ADT in Chinese patients (pts) with metastatic hormone-sensitive prostate cancer (mHSPC)
Presenter: Gongqian Zeng
Session: Poster session 14
1796P - Real-world analysis of metastatic hormone-sensitive prostate cancer: Are randomized clinical trials more trustworthy? Insights from PIONEER, the European network of excellence for big data in prostate cancer
Presenter: Juan Gómez Rivas
Session: Poster session 14
1797P - Application of novel machine learning model in [68Ga] Ga-PSMA-11 PET/CT: Predicting survival in oligometastatic prostate cancer patients
Presenter: Mikaela Dell'Oro
Session: Poster session 14
1800P - Differential tumor gene-expression profiling of patients (pts) with de-novo metastatic castration-sensitive prostate cancer (dn-mCSPC) versus (vs.) mCSPC relapsing after prior localized therapy (PLT-mCSPC)
Presenter: Vinay Mathew Thomas
Session: Poster session 14
1803P - Phase I/II study of bavdegalutamide, a PROTAC androgen receptor (AR) degrader in metastatic castration-resistant prostate cancer (mCRPC): Radiographic progression-free survival (rPFS) in patients (pts) with <italic>AR</italic> ligand-binding domain (LBD) mutations
Presenter: Daniel Petrylak
Session: Poster session 14