Abstract 1258P
Background
Machine-learning and radiomics are promising approaches to improve the clinical management of NSCLC. However the additive value of FDG-PET based radiomic compared to clinical and standard imaging variables is less investigated. We aimed to assess the prognostic role of combined use of machine-learning and radiomics in NSCLC patients.
Methods
320 NSCLC patients underwent PET/CT with FDG at initial staging. Forty-nine predictors, including 43 textural features extracted from PET studies, SUVmax,MTV, TLG, TNM tumor stage, age and gender were analyzed. A least absolute shrinkage and selection operator (LASSO) regression was used to select features with highest predictive value. Cox's multivariate regression analysis was used to calculate individual risk scores. We divided patients into high-risk and low-risk groups using the median risk score of each prediction model. Kaplan-Meier and log-rank test were used to compare overall survival (OS) of high- and low-risk patients.
Results
Five variables including one textural feature (NGTDM_Coarseness), SUVmax and tumor stage (stage II, stage III, stage IV) showed highest predictive value at LASSO regression analysis. These variables were used to create a LASSO model (tumor stage, SUVmax and NGTDM_Coarseness) which was compared to a reference model (tumor stage, SUVmax). After a median follow-up time of 35 months, 61.6% of patients were deceased. The LASSO model classified 70% deceased and 81% alive as high- and low-risk patients respectively (Odd Ratio(OR)=[9.9, Confidence Interval(CI)=5.8,17.1]). The reference model classified 70% deceased and 82% alive as high- and low-risk patients respectively (OR=[10.7, CI=6.2,18.7]). Kaplan-Meier curves showed that both the reference model and the LASSO model significantly predicted shorter OS in the high-risk group, without any significant model difference: median OS in the high-risk group was 15 months (95%CI, 11-18) for both models while median OS was not reached in the low-risk group for both models.
Conclusions
These data indicate that radiomics does not significantly improve the prediction of outcome based on disease stage and SUVmax. Morover, the SUVmax used with the stage improves the accuracy of the stage alone based prediction.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Andrea Ciarmiello.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1807P - Talazoparib (TALA) plus enzalutamide (ENZA) in metastatic castration-resistant prostate cancer (mCRPC): Subgroup analyses of the all-comers cohort from TALAPRO-2 by homologous recombination repair (HRR) status
Presenter: Nobuaki Matsubara
Session: Poster session 14
1808P - Pain response and health-related quality of life (HRQL) analysis in patients with metastatic castration-resistant prostate cancer (mCRPC) receiving cabazitaxel every 2 weeks (16 mg/m<sup>2</sup>) versus every 3 weeks (25 mg/m<sup>2</sup>) in the CABASTY phase III trial
Presenter: Stephane Oudard
Session: Poster session 14
1809P - Dynamics of plasma tumour DNA and copy number alterations in advanced metastatic castration-resistant prostate cancer (mCRPC) patients treated with cabazitaxel: A prospective biomarker trial
Presenter: Nicole Brighi
Session: Poster session 14
1810P - Association of health-related quality of life with efficacy outcomes in the VISION study of patients with metastatic castration-resistant prostate cancer
Presenter: Michael Morris
Session: Poster session 14
1811P - Patient-reported outcomes (PROs) in men with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) mutations receiving talazoparib (TALA) + enzalutamide (ENZA) vs placebo (PBO) + ENZA: Results from a phase III (TALAPRO-2) study
Presenter: Andre Fay
Session: Poster session 14
1813P - Phase I/II trial of oral EPI-7386 in combination with enzalutamide (enz) compared to enz alone in metastatic castration-resistant prostate cancer (mCRPC) subjects: Current phase I (PI) results
Presenter: Andrew Laccetti
Session: Poster session 14
1814P - First real-life data on [177Lu]Lu-PSMA-617: Descriptive analysis on the largest metastatic castration-resistant prostate cancer (mCRPC) cohort treated in early access in France
Presenter: Anne-Laure Giraudet
Session: Poster session 14
1815P - Emergent circulating tumor DNA (ctDNA) variants and ctDNA burden dynamics with potential associations with talazoparib antitumor activity in TALAPRO-1
Presenter: Elena Castro
Session: Poster session 14