Abstract 1233P
Background
Circulating cell-free DNA (cfDNA) is a promising biomarker for early cancer detection, and its fragmentomics features have been successfully used to detect cancer signals in blood. However, its ability to predict the tissue of origin (TOO) of cancers remains to be evaluated, which is highly desirable to differentiate the most common types of gastrointestinal (GI) cancers, including colorectal (CC), esophageal (EC), gastric (GC), liver (LC), and pancreatic cancer (PC).
Methods
Whole-genome sequencing was performed for the cfDNA of 769 cancer patients (149 CCs, 137 ECs, 149 GCs, 272 LCs, and 62 PCs), to calculate the coverage at repetitive genomic regions (RepeatsCov), the depth and the cleavage diversity around transcription start sites (TSSDepth and TSSClvDiv), and the microbiome abundance (MicrobeAb). Together with other classical fragmentomics features, including copy number variation (CNV), end motif diversity (EDM), fragment size ratio (FSR), and promoter fragmentation entropy (PFE), a stacked ensemble machine learning classifier was trained and tested with sample ratio of 1:1 to predict the TOO of the GI cancers.
Results
The performance of each single feature was evaluated first, showing that the FSR model had the highest accuracy of 67.1% while the RepeatsCov model had the lowest of 53.9%. The ensemble of all the features resulted in an accuracy of 67.6%. Interestingly, a model combining MicrobeAb, RepeatsCov and FSR achieved the highest accuracy of 69.4% for all cancers (CC: 63.8%, EC&GC: 63.3%, LC: 83.6%, and PC: 43.8%), and an elevated accuracy of 87.8% to predict the top two most likely TOOs. We also trained and tested a previously reported multi-features-based model on our data, and our classifier achieved higher accuracy (69.4% vs. 60.6%).
Conclusions
We comprehensively evaluated the classical and our newly developed cfDNA fragmentomics features in predicting the TOO of cancer signals, and showed that by combining features including MicrobeAb, RepeatsCov and FSR, we were able to maximize the accuracy in predicting GI cancers’ TOO. However, results also indicate that features should be carefully selected to avoid multicollinearity or other negative effects.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Key Research and Development Program of China.
Disclosure
R. Fu, K. Xie, Y. Liu, H. Chen, M. Su, Q. He, Z. Su: Financial Interests, Personal, Full or part-time Employment: Singlera Genomics Inc. R. Liu: Financial Interests, Personal, Officer: Singlera Genomics Inc. All other authors have declared no conflicts of interest.
Resources from the same session
1203P - Role of tumor markers before or during chemotherapy for poorly differentiated neuroendocrine carcinomas of the digestive system: An exploratory analysis of JCOG1213
Presenter: Tomoyuki Satake
Session: Poster session 14
1204TiP - Iadademstat in combination with paclitaxel in relapsed/refractory small cell lung carcinoma (SCLC) and extrapulmonary high grade neuroendocrine carcinoma (NEC)
Presenter: Neel Belani
Session: Poster session 14
1212P - Predictive value of a near-term prediction model for severe irAEs in cancer treatment with ICIs
Presenter: Jun Zhao
Session: Poster session 14
1213P - HRD complete: A novel NGS assay for detecting homologous recombination repair (HRR) gene alterations in prostate cancer
Presenter: Xin Ye
Session: Poster session 14
1214P - A novel machine learning based method to detect homozygous deletion of homologous recombination repair (HRR) genes in prostate cancer
Presenter: Jianqing Wang
Session: Poster session 14
1215P - Comparative analysis of cfDNA liquid biopsy and tumor-based next-generation sequencing (NGS) approaches
Presenter: Anastasiya Yudina
Session: Poster session 14
1216P - A spectroscopic liquid biopsy for the earlier detection of multiple cancer types
Presenter: Matthew Baker
Session: Poster session 14
1217P - Clinical evaluation of a CE-IVD liquid biopsy pan cancer genomic profiling test
Presenter: Timothy Crook
Session: Poster session 14
1218P - Exploring cancer care pathways in seven European countries: Identifying obstacles and opportunities for the role of artificial intelligence
Presenter: Shereen Nabhani
Session: Poster session 14