Abstract 5271
Background
Clinical trials improve our knowledge of diseases and treatments while providing patients access to investigational agents. However, approximately 3% of newly diagnosed cancer patients are enrolled in clinical trials in the United States. Identifying an appropriate trial for a patient is time-consuming and cumbersome in the busy clinical practice. The Watson for Clinical Trial Matching (CTM) cognitive system uses AI to derive patient and cancer-related attributes from structured and unstructured text found in the electronic health record. These attributes are matched to complex eligibility criteria in clinical trial protocols.
Methods
In April 2019, a pilot study was launched to test the feasibility of implementing CTM in Gastrointestinal (GI) oncology at Mayo Clinic in Rochester, MN. Two clinical research coordinators (CRCs) screened patients for potential clinical trials prior to their clinic visits using both CTM and the traditional manual screening method. To avoid bias, each CRC screened a separate set of patients by both methods alternating which methodology was used first. The clinical trial match results were blinded to both CRCs. For each method, time to complete the screen and number of potential clinical trial matches were recorded.
Results
A total of 35 GI cancer patients with new diagnosis, recent resection or restaging scans were analyzed. Patients were evaluated against 50 GI-specific drug therapy and multi-disease phase I clinical trials. Clinical trial matching using CTM took an average of 10.1 minutes (Range: 4 to 20 min) per patient compared to an average of 30.5 minutes (Range: 5 to 75 min) per patient (p < 0.0001) using the manual method. CTM identified an average of 7.66 clinical trials (Range: 0-16) while the manual screening method identified an average of 1.97 clinical trials (Range: 0 to 6) per patient (p < 0.0001).
Conclusions
Implementation of Watson for CTM system with a CRC team may enable high volume patient screening for a large number of clinical trials in an efficient manner and promote awareness of clinical trial opportunities within the GI oncology practice. Further analysis to evaluate CTM accuracy and impact on enrollment is warranted and currently underway.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Mayo Clinic.
Disclosure
T. Haddad: Advisory / Consultancy: TerSera Therapeautics; Research grant / Funding (self): Takeda. S. Coverdill: Full / Part-time employment: IBM Watson Health; Shareholder / Stockholder / Stock options: IBM. M. Rammage: Full / Part-time employment: IBM Watson Health; Licensing / Royalties: IBM. All other authors have declared no conflicts of interest.
Resources from the same session
5517 - Molecular fingerprinting in breast cancer (BC) screening using Quantum Optics (QO) technology combined with an artificial intelligence (AI) approach applying the concept of “molecular profiles at n variables (MPnV)”: a prospective pilot study.
Presenter: Jean-Marc Nabholtz
Session: Poster Display session 3
Resources:
Abstract
2152 - Inferring the correlation between incidence rates of melanoma and the average tumor-specific epitope binding ability of HLA class I molecules in different populations
Presenter: Istvan Miklos
Session: Poster Display session 3
Resources:
Abstract
4382 - Thermal Liquid Biopsy as a Valuable Tool in Lung Cancer Screening Programs
Presenter: Alberto Rodrigo
Session: Poster Display session 3
Resources:
Abstract
2465 - Towards a screening test for cancer by circulating DNA analysis
Presenter: Rita Tanos
Session: Poster Display session 3
Resources:
Abstract
3788 - Evaluation of a successful launch of the MammaPrint and BluePrint NGS kit
Presenter: Leonie Delahaye
Session: Poster Display session 3
Resources:
Abstract
3863 - Analysis of prognostic factors on overall survival in elderly women treated for early breast cancer using data mining and machine learning
Presenter: Pierre Heudel
Session: Poster Display session 3
Resources:
Abstract
1993 - Circulating tumor cell detection in epithelial ovarian cancer using dual-component antibodies targeting EpCAM and FRα
Presenter: Na Li
Session: Poster Display session 3
Resources:
Abstract
4281 - CEUS of the breast: Is it feasible in improved performance of BI-RADS evaluation of critical breast lesions?——A multi-center prospective study in China
Presenter: Jun Luo
Session: Poster Display session 3
Resources:
Abstract
2268 - Classification of abnormal findings on ring-type dedicated breast PET for detecting breast cancer
Presenter: Shinsuke Sasada
Session: Poster Display session 3
Resources:
Abstract
4035 - Prediction of benign and malignant breast masses using digital mammograms texture features
Presenter: Cui Yanhua
Session: Poster Display session 3
Resources:
Abstract