Abstract 5271
Background
Clinical trials improve our knowledge of diseases and treatments while providing patients access to investigational agents. However, approximately 3% of newly diagnosed cancer patients are enrolled in clinical trials in the United States. Identifying an appropriate trial for a patient is time-consuming and cumbersome in the busy clinical practice. The Watson for Clinical Trial Matching (CTM) cognitive system uses AI to derive patient and cancer-related attributes from structured and unstructured text found in the electronic health record. These attributes are matched to complex eligibility criteria in clinical trial protocols.
Methods
In April 2019, a pilot study was launched to test the feasibility of implementing CTM in Gastrointestinal (GI) oncology at Mayo Clinic in Rochester, MN. Two clinical research coordinators (CRCs) screened patients for potential clinical trials prior to their clinic visits using both CTM and the traditional manual screening method. To avoid bias, each CRC screened a separate set of patients by both methods alternating which methodology was used first. The clinical trial match results were blinded to both CRCs. For each method, time to complete the screen and number of potential clinical trial matches were recorded.
Results
A total of 35 GI cancer patients with new diagnosis, recent resection or restaging scans were analyzed. Patients were evaluated against 50 GI-specific drug therapy and multi-disease phase I clinical trials. Clinical trial matching using CTM took an average of 10.1 minutes (Range: 4 to 20 min) per patient compared to an average of 30.5 minutes (Range: 5 to 75 min) per patient (p < 0.0001) using the manual method. CTM identified an average of 7.66 clinical trials (Range: 0-16) while the manual screening method identified an average of 1.97 clinical trials (Range: 0 to 6) per patient (p < 0.0001).
Conclusions
Implementation of Watson for CTM system with a CRC team may enable high volume patient screening for a large number of clinical trials in an efficient manner and promote awareness of clinical trial opportunities within the GI oncology practice. Further analysis to evaluate CTM accuracy and impact on enrollment is warranted and currently underway.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Mayo Clinic.
Disclosure
T. Haddad: Advisory / Consultancy: TerSera Therapeautics; Research grant / Funding (self): Takeda. S. Coverdill: Full / Part-time employment: IBM Watson Health; Shareholder / Stockholder / Stock options: IBM. M. Rammage: Full / Part-time employment: IBM Watson Health; Licensing / Royalties: IBM. All other authors have declared no conflicts of interest.
Resources from the same session
2963 - Analytical performance of the Resolution-HRD plasma assay used to identify mCRPC patients with biallelic disruption of DNA repair genes for treatment with niraparib
Presenter: Ira Pekker
Session: Poster Display session 3
Resources:
Abstract
3523 - Results of a global external quality assessment scheme for EGFR testing on liquid biopsy
Presenter: Nicola Normanno
Session: Poster Display session 3
Resources:
Abstract
3295 - Clinical impact of plasma Next-Generation Sequencing (NGS) in advanced Non-small cell lung cancer (aNSCLC)
Presenter: Laura Bonanno
Session: Poster Display session 3
Resources:
Abstract
5632 - Feasibility study of a ctEGFR prototype assay on the fully automated Idylla™ platform
Presenter: Martin Reijans
Session: Poster Display session 3
Resources:
Abstract
3614 - Enhanced Access to EGFR Molecular Testing in NSCLC using a Cell-Free DNA Tube for Liquid Biopsy
Presenter: Theresa May
Session: Poster Display session 3
Resources:
Abstract
5664 - Analysis of circulating tumor DNA in paired plasma and sputum samples of EGFR-mutated NSCLC patients
Presenter: Christina Grech
Session: Poster Display session 3
Resources:
Abstract
4945 - Liquid biopsy and Array Comparative Genomic Hybridization (aCGH)
Presenter: Panagiotis Apostolou
Session: Poster Display session 3
Resources:
Abstract
5746 - Next-generation sequencing panel verification to detect low frequency single nucleotide and copy number variants from mixing cell line studies
Presenter: Rocio Rosas-Alonso
Session: Poster Display session 3
Resources:
Abstract
5901 - Automated rarefaction analysis for precision B and T cell receptor repertoire profiling from peripheral blood and FFPE-preserved tumor
Presenter: Luca Quagliata
Session: Poster Display session 3
Resources:
Abstract
2027 - A Heptamethine cyanine dye is a potential diagnostic marker for Myeloid-Derived Suppressor Cells
Presenter: Chaeyong Jung
Session: Poster Display session 3
Resources:
Abstract