Abstract 5271
Background
Clinical trials improve our knowledge of diseases and treatments while providing patients access to investigational agents. However, approximately 3% of newly diagnosed cancer patients are enrolled in clinical trials in the United States. Identifying an appropriate trial for a patient is time-consuming and cumbersome in the busy clinical practice. The Watson for Clinical Trial Matching (CTM) cognitive system uses AI to derive patient and cancer-related attributes from structured and unstructured text found in the electronic health record. These attributes are matched to complex eligibility criteria in clinical trial protocols.
Methods
In April 2019, a pilot study was launched to test the feasibility of implementing CTM in Gastrointestinal (GI) oncology at Mayo Clinic in Rochester, MN. Two clinical research coordinators (CRCs) screened patients for potential clinical trials prior to their clinic visits using both CTM and the traditional manual screening method. To avoid bias, each CRC screened a separate set of patients by both methods alternating which methodology was used first. The clinical trial match results were blinded to both CRCs. For each method, time to complete the screen and number of potential clinical trial matches were recorded.
Results
A total of 35 GI cancer patients with new diagnosis, recent resection or restaging scans were analyzed. Patients were evaluated against 50 GI-specific drug therapy and multi-disease phase I clinical trials. Clinical trial matching using CTM took an average of 10.1 minutes (Range: 4 to 20 min) per patient compared to an average of 30.5 minutes (Range: 5 to 75 min) per patient (p < 0.0001) using the manual method. CTM identified an average of 7.66 clinical trials (Range: 0-16) while the manual screening method identified an average of 1.97 clinical trials (Range: 0 to 6) per patient (p < 0.0001).
Conclusions
Implementation of Watson for CTM system with a CRC team may enable high volume patient screening for a large number of clinical trials in an efficient manner and promote awareness of clinical trial opportunities within the GI oncology practice. Further analysis to evaluate CTM accuracy and impact on enrollment is warranted and currently underway.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Mayo Clinic.
Disclosure
T. Haddad: Advisory / Consultancy: TerSera Therapeautics; Research grant / Funding (self): Takeda. S. Coverdill: Full / Part-time employment: IBM Watson Health; Shareholder / Stockholder / Stock options: IBM. M. Rammage: Full / Part-time employment: IBM Watson Health; Licensing / Royalties: IBM. All other authors have declared no conflicts of interest.
Resources from the same session
2036 - Salivary metabolomics for colorectal cancer detection
Presenter: Hiroshi Kuwabara
Session: Poster Display session 3
Resources:
Abstract
1868 - Evaluation and diagnostic potential of plasma biomarkers in bladder cancer
Presenter: Veronika Voronova
Session: Poster Display session 3
Resources:
Abstract
3655 - Liquid biopsy assays using combined circulating tumor cells and circulating tumor DNA in the same patients for the diagnosis of primary lung cancer
Presenter: Yongjoon Suh
Session: Poster Display session 3
Resources:
Abstract
3685 - Peripheral Cytotoxic T Cell Correlates with Tumor Mutational Burden and is Predictive for Progression Free Survival in Advanced Breast Cancer
Presenter: Xiao-ran Liu
Session: Poster Display session 3
Resources:
Abstract
1050 - Splenic Metabolic Activity as Biomarker in Cervical Cancer
Presenter: Emiel De Jaeghere
Session: Poster Display session 3
Resources:
Abstract
1413 - Identification of distinct subtypes revealing prognostic and therapeutic relevance in diffuse type gastric cancer
Presenter: Seon-Kyu Kim
Session: Poster Display session 3
Resources:
Abstract
2140 - Recurrence risk evaluation in stage IB/IIA gastric cancer with TP53 codon 72 polymorphisms
Presenter: Satoshi Nishizuka
Session: Poster Display session 3
Resources:
Abstract
1573 - Identification and validation of a prognostic 4 genes signature for hepatocellular carcinoma: integrated ceRNA network analysis
Presenter: Yongcong Yan
Session: Poster Display session 3
Resources:
Abstract
1196 - Plasma KIM-1 is associated with clinical outcomes after resection for localized renal cell carcinoma: A trial of the ECOG-ACRIN Research Group (E2805)
Presenter: Wenxin Xu
Session: Poster Display session 3
Resources:
Abstract
2657 - Prognostic immunoprofiling of muscle invasive bladder cancer (MIBC) patients in a multicentre setting
Presenter: Katharina Nekolla
Session: Poster Display session 3
Resources:
Abstract