Abstract 364P
Background
To develop artificial intelligence auto-segmentation model that generates consistent, high-quality lymph nodes contouring in head and neck cancer patients who received radiotherapy.
Methods
There were 60 computed tomography (CT) scans were retrospectively selected into training and another 60 CT scans were collected into cross-validation. All target delineations covered head and neck lymph node level I through V and based on the Radiation Therapy Oncology Group (RTOG) guideline. All targets were approved by radiation oncologists specializing in head and neck cancer. The volume of interest and all approved contours were used to train a 3D U-Net model. Different lymph node levels were trained independently. The trained model was used on cross-validation group. Auto-segmentations were revised by 2 radiation oncologists.
Results
The Dice Similarity Coefficients were 0.79 and 0.88 in trained group and cross-validation group. The volume changes ranged from -22.2 to 89.0 cm3. The center shift for x-direction, y-direction, and z-direction were -0.57 to 0.16 cm, -0.14 to 0.88 cm, and -0.19 to 0.38 cm, respectively.
Conclusions
We developed an artificial intelligence auto-segmentation model to autodelineate head and neck lymph nodes. Most results of auto-segmentations were acceptable after radiation oncologist review. This enables more efficient and consistent targeting of neck lymph nodes in radiation treatment planning.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
39P - Prognostic significance of hypoxic microenvironment biomarkers in invasive ductal breast cancer
Presenter: Sungmin Kang
Session: Poster Display
Resources:
Abstract
40P - Intra-tumoral CD3, CD4, and CD8 as prognostic biomarkers in Asian breast cancer
Presenter: Jia Wern Pan
Session: Poster Display
Resources:
Abstract
41P - Brown fat activation demonstrated on FDG PET/CT predicts survival outcome
Presenter: Sonya Park
Session: Poster Display
Resources:
Abstract
42P - A promising anticancer drug for triple-negative breast cancer: OZ-001 suppresses tumor growth by dual targeting STAT3 and calcium signaling
Presenter: Jisun Kim
Session: Poster Display
Resources:
Abstract
43P - Performance evaluation of a combined risk model for breast cancer risk prediction in Indonesian population (TRIP Study)
Presenter: Marco Wijaya
Session: Poster Display
Resources:
Abstract
44P - Pathological complete response to neoadjuvant chemotherapy and outcomes in Her-2 negative locally advanced breast cancer
Presenter: Amrith Patel
Session: Poster Display
Resources:
Abstract
45P - Demographic determinants of pathological complete response after neoadjuvant chemotherapy in breast cancer
Presenter: Anvesh Dharanikota
Session: Poster Display
Resources:
Abstract
46P - Predicting toxicity following cancer chemotherapy by detecting transporter gene ABCB1 (C1236T, G2677T/A, C3435CT) polymorphism in breast cancer patients receiving chemotherapy with anthracycline and taxane either sequentially or concomitantly
Presenter: Tanuma Mistry
Session: Poster Display
Resources:
Abstract
47P - Sequencing of chemotherapy and surgery among older triple-negative and HER2-positive breast cancer patients with comorbidities
Presenter: Anvesh Dharanikota
Session: Poster Display
Resources:
Abstract
48P - The impact of preoperative axillary ultrasound on the false negative rate of sentinel lymph node biopsy in post neoadjuvant chemotherapy breast cancer patients
Presenter: Byshetty Rajendar
Session: Poster Display
Resources:
Abstract