Abstract 364P
Background
To develop artificial intelligence auto-segmentation model that generates consistent, high-quality lymph nodes contouring in head and neck cancer patients who received radiotherapy.
Methods
There were 60 computed tomography (CT) scans were retrospectively selected into training and another 60 CT scans were collected into cross-validation. All target delineations covered head and neck lymph node level I through V and based on the Radiation Therapy Oncology Group (RTOG) guideline. All targets were approved by radiation oncologists specializing in head and neck cancer. The volume of interest and all approved contours were used to train a 3D U-Net model. Different lymph node levels were trained independently. The trained model was used on cross-validation group. Auto-segmentations were revised by 2 radiation oncologists.
Results
The Dice Similarity Coefficients were 0.79 and 0.88 in trained group and cross-validation group. The volume changes ranged from -22.2 to 89.0 cm3. The center shift for x-direction, y-direction, and z-direction were -0.57 to 0.16 cm, -0.14 to 0.88 cm, and -0.19 to 0.38 cm, respectively.
Conclusions
We developed an artificial intelligence auto-segmentation model to autodelineate head and neck lymph nodes. Most results of auto-segmentations were acceptable after radiation oncologist review. This enables more efficient and consistent targeting of neck lymph nodes in radiation treatment planning.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
111P - Comparison of the efficacy and safety of fruquintinib and fruquintinib combined with immune checkpoint inhibitors in the treatment of metastatic microsatellite stable colorectal cancer: A real-world study
Presenter: Zhiqiang Wang
Session: Poster Display
Resources:
Abstract
112P - Optimal classification and treatment strategy based on technical and oncological futures in recurrence of colorectal liver metastases
Presenter: Kosuke Kobayashi
Session: Poster Display
Resources:
Abstract
113P - Phase I/II study of capecitabine(C)/oxaliplatin(O)/irinotecan(I) combined with bevacizumab(B) in the first-line treatment of metastatic colorectal cancer (mCRC)
Presenter: Kai Ou
Session: Poster Display
Resources:
Abstract
114P - The prognostic role of LAG-3 expression in metastatic colorectal cancer
Presenter: Yi-Hsuan Huang
Session: Poster Display
Resources:
Abstract
115P - Sidedness and survival of chemo-refractory metastatic colorectal cancer treated with lonsurf or regorafenib: A nationwide population-based study in Taiwan
Presenter: Meng-Che Hsieh
Session: Poster Display
Resources:
Abstract
116P - Burden and trends of colorectal cancer in high income Asia Pacific countries from 1990-2019 and its projections of deaths to 2040: A comparative analysis
Presenter: Monika Chhayani
Session: Poster Display
Resources:
Abstract
117P - Australasian real-world treatment selection and clinical outcomes for patients with left side (LS), RAS wildtype (RASwt) metastatic colorectal cancer (mCRC)
Presenter: Vanessa Wong
Session: Poster Display
Resources:
Abstract
119P - Neoadjuvant chemoradiotherapy in the mode of hypofractionation in locally advanced rectal cancer: Is it time to change standards of care?
Presenter: Abror Abdujapparov
Session: Poster Display
Resources:
Abstract
120P - Improved clinical outcomes with cetuximab maintenance therapy in left-sided RAS/BRAF wild-type metastatic colorectal cancer: A real-world study of Hunan cancer hospital
Presenter: Xiaolin Yang
Session: Poster Display
Resources:
Abstract
121P - Single-cell sequencing reveals the role of Treg cells with high expression of BIRC3 in regulating the progression of colorectal cancer
Presenter: Yuqiu Xu
Session: Poster Display
Resources:
Abstract