Abstract 364P
Background
To develop artificial intelligence auto-segmentation model that generates consistent, high-quality lymph nodes contouring in head and neck cancer patients who received radiotherapy.
Methods
There were 60 computed tomography (CT) scans were retrospectively selected into training and another 60 CT scans were collected into cross-validation. All target delineations covered head and neck lymph node level I through V and based on the Radiation Therapy Oncology Group (RTOG) guideline. All targets were approved by radiation oncologists specializing in head and neck cancer. The volume of interest and all approved contours were used to train a 3D U-Net model. Different lymph node levels were trained independently. The trained model was used on cross-validation group. Auto-segmentations were revised by 2 radiation oncologists.
Results
The Dice Similarity Coefficients were 0.79 and 0.88 in trained group and cross-validation group. The volume changes ranged from -22.2 to 89.0 cm3. The center shift for x-direction, y-direction, and z-direction were -0.57 to 0.16 cm, -0.14 to 0.88 cm, and -0.19 to 0.38 cm, respectively.
Conclusions
We developed an artificial intelligence auto-segmentation model to autodelineate head and neck lymph nodes. Most results of auto-segmentations were acceptable after radiation oncologist review. This enables more efficient and consistent targeting of neck lymph nodes in radiation treatment planning.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
73TiP - Global phase III studies evaluating vepdegestrant in estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)- advanced breast cancer: VERITAC-2 and VERITAC-3
Presenter: Hiroji Iwata
Session: Poster Display
Resources:
Abstract
78P - First-in-human phase I study of TT-00434, an orally available FGFR (1-3) inhibitor in patients with advanced solid tumors
Presenter: Chia Jui Yen
Session: Poster Display
Resources:
Abstract
79P - Accelerated identification of recurrent neoantigens for the development of off-the-shelf cancer vaccines
Presenter: Le Son Tran
Session: Poster Display
Resources:
Abstract
80P - Safety, preliminary efficacy, and pharmacokinetics of HLX26 plus serplulimab in advanced solid tumours: An open-label, dose-escalation phase I study
Presenter: Yanmin Wu
Session: Poster Display
Resources:
Abstract
81P - A first-in-human, multiple dose and dose escalation phase I study to investigate the safety, tolerability and antitumor activity of SmarT cells plus PD-1 blocking antibodies in patients with far advanced/metastatic solid tumors
Presenter: Qin Liu
Session: Poster Display
Resources:
Abstract
82P - NEXUS: A phase I dose escalation study of selinexor plus nivolumab and ipilimumab in Asian patients with advanced/metastatic solid malignancies
Presenter: Gloria Chan
Session: Poster Display
Resources:
Abstract
83P - The updated report of phase I trial of VG2025, a non-attenuated HSV-1 oncolytic virus expressing IL-12 and IL-15/RA payloads, in patients with advanced solid tumors
Presenter: Yinan Shen
Session: Poster Display
Resources:
Abstract
84P - T cell receptor repertoire profiles of tumor -infiltrating lymphocytes improves neoantigen prioritization for personalized cancer immunotherapy
Presenter: Tran Nguyen
Session: Poster Display
Resources:
Abstract
85P - Oligometastatic solid tumors: Disease characteristics and role of local therapies
Presenter: Alshimaa Al Hanafy
Session: Poster Display
Resources:
Abstract
86P - Efficacy and safety of HLX07 monotherapy in advanced cutaneous squamous cell carcinoma: An open-label, multicentre phase II study
Presenter: Changxing Li
Session: Poster Display
Resources:
Abstract