Abstract 364P
Background
To develop artificial intelligence auto-segmentation model that generates consistent, high-quality lymph nodes contouring in head and neck cancer patients who received radiotherapy.
Methods
There were 60 computed tomography (CT) scans were retrospectively selected into training and another 60 CT scans were collected into cross-validation. All target delineations covered head and neck lymph node level I through V and based on the Radiation Therapy Oncology Group (RTOG) guideline. All targets were approved by radiation oncologists specializing in head and neck cancer. The volume of interest and all approved contours were used to train a 3D U-Net model. Different lymph node levels were trained independently. The trained model was used on cross-validation group. Auto-segmentations were revised by 2 radiation oncologists.
Results
The Dice Similarity Coefficients were 0.79 and 0.88 in trained group and cross-validation group. The volume changes ranged from -22.2 to 89.0 cm3. The center shift for x-direction, y-direction, and z-direction were -0.57 to 0.16 cm, -0.14 to 0.88 cm, and -0.19 to 0.38 cm, respectively.
Conclusions
We developed an artificial intelligence auto-segmentation model to autodelineate head and neck lymph nodes. Most results of auto-segmentations were acceptable after radiation oncologist review. This enables more efficient and consistent targeting of neck lymph nodes in radiation treatment planning.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The author.
Funding
Has not received any funding.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
87TiP - Phase I expansion study of the tissue factor (TF)–targeting antibody-drug conjugate (ADC) XB002 as a single-agent and combination therapy in patients with advanced solid tumors (JEWEL-101)
Presenter: Mustafa Syed
Session: Poster Display
Resources:
Abstract
88TiP - A phase Ib study of HMBD-001, a monoclonal antibody targeting HER3, with or without chemotherapy in patients with genetic aberrations in HER3 signaling
Presenter: Nick Pavlakis
Session: Poster Display
Resources:
Abstract
93P - Efficacy and safety of fruquintinib (F) + best supportive care (BSC) vs placebo (P) + BSC in refractory metastatic colorectal cancer (mCRC): Asian vs non-Asian outcomes in FRESCO-2
Presenter: Daisuke Kotani
Session: Poster Display
Resources:
Abstract
94P - Sidedness-dependent prognostic impact of gene alterations in metastatic colorectal cancer in the nationwide cancer genome screening project in Japan (SCRUM-Japan GI-SCREEN)
Presenter: Takeshi Kajiwara
Session: Poster Display
Resources:
Abstract
95P - Interim results of a prospective randomized controlled study to compare the clinical outcomes of total neoadjuvant therapy vs long course chemoradiotherapy in locally advanced carcinoma rectum
Presenter: Sandip Barik
Session: Poster Display
Resources:
Abstract
96P - Tyrosine kinase inhibitor (TKI) plus PD-1 blockade in TKI-responsive MSS/pMMR metastatic colorectal adenocarcinoma (mCRC): Updated results of TRAP study
Presenter: Jingdong Zhang
Session: Poster Display
Resources:
Abstract
97P - Asian subgroup analysis of the phase III LEAP-017 trial of lenvatinib plus pembrolizumab vs standard-of-care in previously treated metastatic colorectal cancer (mCRC)
Presenter: Rui-Hua Xu
Session: Poster Display
Resources:
Abstract
98P - Real clinical impact of postoperative surgical complications after colon cancer surgery
Presenter: Toru Aoyama
Session: Poster Display
Resources:
Abstract
99P - Extended lymphadenectomy may not be necessary for MSI-H colon cancer patients after immunotherapy
Presenter: Rongxin Zhang
Session: Poster Display
Resources:
Abstract
100P - Identification of phenomic data in the pathogenesis of colorectal cancer: A UK biobank data analysis
Presenter: Shirin Hui Tan
Session: Poster Display
Resources:
Abstract