Abstract 43P
Background
Breast cancer remains a significant concern worldwide. Risk-based screening, which tailors screening recommendations to individual risk levels, has been shown to enhance patient stratification. However, most research on model development focuses on Western populations, leaving the predictive accuracy of these models for Southeast Asian populations largely uncharacterized.
Methods
We conducted an observational case-control study comprising 305 Indonesian women to assess the applicability of published risk models to the local population. We employed a combined risk model to classify patients as either elevated or average risk. Our combined model evaluates two separate risk factors: genetic risk, assessed using ancestry-adjusted PRS scores based on the Mavaddat model, and clinical risk, evaluated using the Gail model. The performance of each individual model and their combined effectiveness were analyzed using the Area Under the Curve (AUC) and Odds Ratio (OR).
Results
Individual risk models retained their predictive efficacy in the Indonesian context. Specifically, the AUC achieved for genetic risk is AUC of 0.674 (p = 1.28 x 10-3; Risk group: OR = 3.16; p = 2.5 x 10-1). For clinical risk, the AUC stands at 0.674 (p = 5.16 x 10-4; Risk group: OR = 7.636; p = 6.1 x 10-3). Remarkably, when combined, the AUC increased to 0.701 (Risk group: OR= 3.897; p = 4.28 x 10-2), signifying the benefits of a multi-factor model. Based on a subset of the samples taken from this study, the Nala Breast Cancer Risk genetic risk algorithm generated higher AUC when compared to a leading third-party software that uses the same PRS model for breast cancer (0.63 vs 0.55). This improvement is primarily due to our method of translating PRS scores into categorical outcomes, which integrates localized disease incidence and mortality rates.
Conclusions
Our findings demonstrate for the first time the applicability of the Polygenic Risk Score using Mavaddat model and clinical score using Gail model to Indonesian populations. In addition, our study shows that, within this demographic, combined risk models provide a superior predictive framework compared to single-factor approaches.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
NalaGenetics.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
5P - Clinicopathologic features and genomic profiling of occult breast cancer
Presenter: Liansha Tang
Session: Poster Display
Resources:
Abstract
6P - Tumor cell-released autophagosomes (TRAPs) promote lung metastasis through inducing PD-L1 high expression of pulmonary vascular endothelial cells (PVECs) in breast cancer
Presenter: Xuru Wang
Session: Poster Display
Resources:
Abstract
7P - Tumor cell-released autophagosomes (TRAPs) promote breast cancer lung metastasis by modulating neutrophil extracellular traps formation
Presenter: Xiaohe Zhou
Session: Poster Display
Resources:
Abstract
9P - Clinicopathological features and prognosis of mucinous breast cancer: A retrospective analysis of 358 patients in Vietnam
Presenter: Hoai Hoang
Session: Poster Display
Resources:
Abstract
10P - Comparison of 28-gene and 70-gene panel in risk-prediction of Chinese women with early-stage HR-positive and HER2-negative breast cancer
Presenter: Lei Lei
Session: Poster Display
Resources:
Abstract
11P - Multimodal analysis of methylation and fragmentomic profiles in plasma cell-free DNA for differentiation of benign and malignant breast tumors
Presenter: Hanh Nguyen
Session: Poster Display
Resources:
Abstract
12P - Plasma cell-free mRNA profiles enable early detection of breast cancer
Presenter: Chi Nguyen
Session: Poster Display
Resources:
Abstract
13P - Relationship of distress and quality of life with gut microbiome composition in newly diagnosed breast cancer patients: A prospective, observational study
Presenter: Chi-Chan Lee
Session: Poster Display
Resources:
Abstract
14P - Classification of molecular subtypes of breast cancer in whole-slide histopathological images using a novel deep learning algorithm
Presenter: Hyung Suk Kim
Session: Poster Display
Resources:
Abstract
15P - The regulation of pregnenolone in breast cancer
Presenter: Hyeon-Gu Kang
Session: Poster Display
Resources:
Abstract