Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
341P - NUP214 gene rearrangements in leukemia patients: Case series from a single institution
Presenter: Yu Jeong Choi
Session: Poster Display
Resources:
Abstract
344P - Venetoclax and azacitidine compared with azacitidine monotherapy for acute myeloid leukemia patients: A systematic review and meta-analysis
Presenter: Azzahra Noersamsjah
Session: Poster Display
Resources:
Abstract
345P - Safety and efficacy of platinum substitution in induction chemotherapy for mantle cell lymphoma
Presenter: Omali Pitiyarachchi
Session: Poster Display
Resources:
Abstract
346P - An assessment of marrow-infiltrating T cells in early relapsed hematologic cancer patients after allogeneic hematopoietic stem cell transplantation
Presenter: Ik-Chan Song
Session: Poster Display
Resources:
Abstract
347P - New targets for adult T cell leukemia/lymphoma (ATLL): A map for ATLL immunotherapy
Presenter: Zahra Rezaei Borojerdi
Session: Poster Display
Resources:
Abstract
348P - In-depth molecular analysis in the diagnosis of lymphomas with lymphoplasmacytic differentiation may provide a more precise diagnosis and rational treatment allocation
Presenter: Ella Willenbacher
Session: Poster Display
Resources:
Abstract
349P - Overall survival and progression-free survival comparison of lenalidomide + standard therapy versus standard therapy only in indolent lymphoma: A meta-analysis
Presenter: Kevin Winston
Session: Poster Display
Resources:
Abstract
350P - Intratumoural CD66b+ to predict treatment response in diffuse large B cell lymphoma (DLBCL)
Presenter: Mita Adriani
Session: Poster Display
Resources:
Abstract
351P - Clinical features and treatment outcomes of Waldenstrom macroglobulinemia patients: A single center study
Presenter: Devi Amelia
Session: Poster Display
Resources:
Abstract
352TiP - Randomized phase III study of daratumumab (D) versus bortezomib plus D as a maintenance therapy after D-MPB for elderly or non-elderly patients refusing transplant with untreated multiple myeloma (JCOG1911, B-DASH study)
Presenter: Tomotaka Suzuki
Session: Poster Display
Resources:
Abstract