Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
281P - 10-year treatment outcome of prostate cancer patients with 3D conformal radiation: Experience of a single cancer institution in Iran
Presenter: Reyhane Bayani
Session: Poster Display
Resources:
Abstract
282P - Predictors of outcomes in patients with clinically lymph node-positive prostate cancer after definitive radiotherapy
Presenter: Jae-Sung Kim
Session: Poster Display
Resources:
Abstract
283P - Radiotherapy utilization rate and treatment patern of protate cancer at Cipto Mangunkusumo Central General Hospital (RSCM): What we learn from pre-pandemic era
Presenter: Riyan Apriantoni
Session: Poster Display
Resources:
Abstract
284TiP - CYCLONE 3: A phase III, randomized, double-blind, placebo-controlled study of abemaciclib in combination with abiraterone plus prednisone in men with high-risk metastatic hormone-sensitive prostate cancer
Presenter: Nobuaki Matsubara
Session: Poster Display
Resources:
Abstract
292P - Comparative characteristics of early cervical cancer diagnosis methods for Tashkent women
Presenter: Gulnoza Goyibova
Session: Poster Display
Resources:
Abstract
293P - Carboplatin in locally advanced cervical cancer treated with chemoradiation: An alternative to cisplatin
Presenter: Natalia Isabel Valdiviezo Lama
Session: Poster Display
Resources:
Abstract
294P - Concurrent chemoradiation with cisplatin every 3 weeks in locally advanced cervical cancer: A single arm phase II clinical trial
Presenter: Long Nguyen
Session: Poster Display
Resources:
Abstract
295P - A prospective study of dose escalated simultaneous integrated boost in node-positive cervical cancer
Presenter: Ritusha Mishra
Session: Poster Display
Resources:
Abstract
296P - Safety, efficacy, and immunogenicity of therapeutic vaccines for patients with high-grade cervical intraepithelial neoplasia (CIN 2/3) associated with human papillomavirus: A systematic review
Presenter: Caroline Amélia Gonçalves
Session: Poster Display
Resources:
Abstract
297P - The utilization rate of radiotherapy and chemotherapy for cervical cancer in Indonesia: Optimal versus actual, how far the gap?
Presenter: Charity Kotambunan
Session: Poster Display
Resources:
Abstract