Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
397P - Comparison between Y-site co-infusion versus standard dexamethasone for preventing hypersensitivity reactions from oxaliplatin administration: A randomized controlled trial
Presenter: jarearnjit Phavirunsiri
Session: Poster Display
Resources:
Abstract
398P - Evaluation of the effectiveness of denosumab therapy giant cell tumor of the pelvis
Presenter: Abbos Nurjabov
Session: Poster Display
Resources:
Abstract
399P - Long-term outcomes of patients with gastric cancer who received the best supportive care without any anticancer treatment
Presenter: Yohei Arihara
Session: Poster Display
Resources:
Abstract
401TiP - Oral opioid vs intravenous patient-controlled analgesia (PCA) with hydromorphone bolus-only or continuous infusion to maintain analgesia for severe cancer pain: A randomized phase III trial
Presenter: Cheng Huang
Session: Poster Display
Resources:
Abstract
407P - K-TrackTM: A streamlined personalized assay to detect molecular residual disease in solid tumors
Presenter: Nam Vo
Session: Poster Display
Resources:
Abstract
408P - Increased EGFR and MET expression and corresponding tumor microenvironment (TME) change in hepatocellular carcinoma (HCC) tissues after sorafenib (Sora) treatment
Presenter: Chia Jui Yen
Session: Poster Display
Resources:
Abstract
410P - Systematic evaluation of cell-free DNA fragmentation patterns for cancer diagnosis and enhanced cancer detection through integration of multiple fragmentations
Presenter: Xiangy-Yu Meng
Session: Poster Display
Resources:
Abstract
412P - Multiplex digital spatial profiling (DSP) of protein reveals distinct immune and molecular phenotypes in hepatocellular carcinoma
Presenter: Chia Jui Yen
Session: Poster Display
Resources:
Abstract
413P - Clinical utility of advanced features provided by circulating tumor DNA-based comprehensive genomic profiling
Presenter: Young-gon Kim
Session: Poster Display
Resources:
Abstract
414P - Landscape of ERBB2 mutations in advanced cancers (AC) using circulating tumor DNA (ctDNA) next-generation sequencing (NGS) in Asia and Middle East (AME)
Presenter: Byoung Chul Cho
Session: Poster Display
Resources:
Abstract