Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
415P - Initial experience in a real-world Asian cohort with a circulating tumor DNA (ctDNA) mutation-based multi-cancer early detection (MCED) assay
Presenter: Steven Tucker
Session: Poster Display
Resources:
Abstract
416P - Three-dimensional bioprinting model of ovarian cancer for identification of patient-specific therapy response
Presenter: Jiangang Zhang
Session: Poster Display
Resources:
Abstract
417P - Early experience in using plasma-only multi-omic minimal residual disease testing in early-stage colorectal cancer patients from Asia and the Middle East
Presenter: Shaheenah Dawood
Session: Poster Display
Resources:
Abstract
418P - Decoding the intricate cellular makeup of immune-related adverse events using single-cell and spatial analysis
Presenter: Dmitrii Shek
Session: Poster Display
Resources:
Abstract
420P - Combinatory genomic and transcriptomic sequencing of Chinese KRAS mutant non-small cell lung cancer revealed molecular and inflammatory heterogeneity in tumor microenvironment
Presenter: Xuchao Zhang
Session: Poster Display
Resources:
Abstract
421P - Comprehensive genomic profiling (CGP) unravels somatic BRCA (sBRCA) and homologous recombinant repair (HRR) gene alterations across multi-cancer spectrum
Presenter: Ramya Kodandapani
Session: Poster Display
Resources:
Abstract
422P - CD8Teff distinguished tumor immunotyping heterogeneity and enables precision immunotherapy
Presenter: luhui Mao
Session: Poster Display
Resources:
Abstract
423P - Insights into clinically actionable biomarkers in an Indian cancer cohort of 1000 patients using comprehensive genomic profiling (CGP)
Presenter: Mithua Ghosh
Session: Poster Display
Resources:
Abstract
424P - MD Anderson Cancer Center global precision oncology decision support (Glo-PODS) clinical trial genomic support: Pilot program at the Prince of Wales Hospital (Chinese University of Hong Kong - CUHK)
Presenter: Brigette Ma
Session: Poster Display
Resources:
Abstract
425P - Engineered <italic>Lactococcus lactis</italic> as a personalized cancer vaccine platform induces antitumour immunity via membrane-inserted peptide for neoantigens
Presenter: Meng Zhu
Session: Poster Display
Resources:
Abstract