Abstract 204P
Background
Although neoadjuvant chemoradiotherapy followed by surgery is the standard treatment for esophageal cancer patients, most patients are unable to achieve pathological complete response with neoadjuvant therapy, resulting in poor outcomes. The aim of this study is to develop a method for selecting patients who can achieve pathological complete response through pre-neoadjuvant therapy chest-enhanced CT scans.
Methods
Two hundreds and one patients with esophageal cancer were enrolled and divided into a training set and a testing set in a 7:3 ratio. Radiomics features of intra-tumoral and peritumoral images were extracted from preoperative chest-enhanced CT scans of these patients. The features were dimensionally reduced in two steps. The selected intra-tumoral and peritumoral features, including marginal (with a distance of 0-3mm from the tumor) and adjacent (with a distance of 3-6mm from the tumor) ROI, were used to build models with four machine learning classifiers, including Support Vector Machine, XG-Boost, Random Forest and Naive Bayes. Models with satisfied accuracy and stability levels were considered to perform well. Finally, the performance of these well-performing models on the testing set was displayed using ROC curves.
Results
Among the 16 models, the best-performing models were the integrated (intra-tumoral and peritumoral features)-XGBoost and integrated-random forest models, which had average ROC AUCs of 0.906 and 0.918, respectively, with relative standard deviations (RSDs) of 6.26 and 6.89 in the training set. In the testing set, the AUCs were 0.845 and 0.871, respectively. There was no significant difference in the ROC curves between the two models. Table: 204P
The performance of the selected models on the testing set
Model | AUC (95% CI) | Specificity | Sensitivity |
Integrated-XGBoost | 0.845 (0.764, 0.928) | 0.864 | 0.777 |
Original-XGBoost | 0.759 (0.660, 0.857) | 0.900 | 0.592 |
Integrated-Random Forest | 0.871 (0.796, 0.946) | 0.682 | 0.933 |
Original-Random Forest | 0.795 (0.703, 0.887) | 0.825 | 0.673 |
Adjacent-Random Forest | 0.769 (0.671, 0.868) | 0.886 | 0.533 |
Integrated-Support Vector Machine | 0.719 (0.613, 0.825) | 0.795 | 0.622 |
Conclusions
The addition of peritumoral radiomics features to the radiomics analysis may improve the predictive performance of pathological response for esophageal cancer patients to neoadjuvant chemoradiotherapy.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
321P - Epidemiology and survival analysis of epithelial ovarian cancer: Results from comprehensive care center in north India
Presenter: Amit Badola
Session: Poster Display
Resources:
Abstract
322P - Evaluation of chemotherapy response score as a prognostic factor in advanced epithelial ovarian cancer: A prospective single centre study
Presenter: Upasana Palo
Session: Poster Display
Resources:
Abstract
323P - Platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio as prognostic biomarkers in ovarian cancer among the Asian population: A meta-analysis
Presenter: Wikania Wira Wiguna I Gede
Session: Poster Display
Resources:
Abstract
324P - All-<italic>trans</italic> retinoic acid sensitizes ovarian cancer to niraparib by inhibiting ALDH1A1 activity
Presenter: Bingjie Mei
Session: Poster Display
Resources:
Abstract
325TiP - A phase III randomized controlled trial in primary stage three and four ovarian cancer after interval cytoreductive surgery (FOCUS/KOV-HIPEC-04)
Presenter: Myong Cheol Lim
Session: Poster Display
Resources:
Abstract
327TiP - A single arm phase II study of single agent pemetrexed in platinum resistant/refractory epithelial ovarian or primary peritoneal cancer
Presenter: Swasthik Parampalli
Session: Poster Display
Resources:
Abstract
337P - Demographic patterns and survival outcomes of patients with T and NK-cell lymphoma at the National Cancer Centre Singapore
Presenter: Mohamed Haniffa Bin Hasan Mohamed
Session: Poster Display
Resources:
Abstract
338P - Multicenter real-world study of advanced-stage non-nasal type NK/T cell lymphoma (NKTCL): Clinical features, treatment and prognosis
Presenter: Yuce Wei
Session: Poster Display
Resources:
Abstract
339P - A comparison of survival of patients with relapsed or refractory diffuse large B cell lymphoma undergoing allogeneic stem cell transplantation or receiving CAR-T therapy
Presenter: Kenta Hayashino
Session: Poster Display
Resources:
Abstract
340P - The role of CT scans and laboratory tests for surveillance in patients with diffuse large B cell lymphoma who achieved complete remission after first-line chemotherapy
Presenter: YU Yagi
Session: Poster Display
Resources:
Abstract