Abstract 59P
Background
Cell therapy has emerged as a promising approach in cancer treatment, leveraging the potential of the patient's immune system to fight tumors. However, the assessment of the efficacy and safety of these therapies remains a significant challenge, since the current available approaches (i.e. 2D cell cultures and animals) have strong limitations in terms of predictability, reliability, and ability to fully mimic the human immune system. This study presents a groundbreaking technological approach in cell therapy testing by integrating 3D patient-derived cancer models with circulating immune cells co-cultured onto an Organ-on-Chip (OoC) platform.
Methods
Biologically relevant cancer samples have been optimized by using an alginate-based structure closely resembling the tumor extracellular matrix. Different cancer cell lines (i.e. MDA-MB-231, SKOV-3, HTLA-230) have been embedded in the matrix and cultured up to 2 months under fluid-dynamic conditions with a OOC chamber, simulating the bloodstream. Alternatively, patient derived tumor biopsies have been coated by a thin layer of alginate, to enhance their structural stability over time, and cultured ex vivo in the same OOC. At the same time, peripheral blood mononuclear cells have been injected in the circulatory OOC circuit and their extravasation and tumor infiltration analysed.
Results
While tumor cells are able to maintain a good viability, cytoskeleton reorganization and migration within the polymeric matrix up to 2 months of culture, patient derived biopsies displayed a challenging survival ex vivo, although the presence of the fluid flow was able to improve the tumor cells survival. The immune checkpoint ligands PD-L1 and PD-L2 were successfully upregulated by the presence of the IFN-gamma and 3% of PBMC derived natural killer cells were able to leave the circulatory flow, and infiltrate the tumor matrix where they induce apoptosis.
Conclusions
A novel fully humanized OOC based platform has been developed to co-culture clinically relevant human cancer model, while immune cells are in circulation, with the final aim to deepen insights into the crosstalk among immune /tumor cells and test cellular therapies in a reproducible and reliable way.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
S. Scaglione, M. Aiello: Financial Interests, Personal, Member of Board of Directors: React4life. All other authors have declared no conflicts of interest.
Resources from the same session
200P - A novel multi-organ on chip model for metastatic tumor biology understanding
Presenter: Elisabetta Palama
Session: Poster Display
201P - Role of aerobic exercise training on the mitochondrial metabolism and effector function of CD8+ tumor-infiltrating lymphocytes
Presenter: Janaina Vieira
Session: Poster Display
202P - Discovery of immunological cellular neighborhoods from protein markers in spatial tumor data
Presenter: Marcin Mozejko
Session: Poster Display
203P - Identification of High Confidence Candidate Markers for Macrophage Infiltrating Tumor Microenvironment through Single Cell Genomic Atlases
Presenter: Constance Ciaudo Beyer
Session: Poster Display
204P - Effect of STAT6 Inhibition as a Novel Strategy for Promoting the Induction of Potent and Stable Regulatory T Cells for Use in Colitis Therapy
Presenter: SONIA LEON-CABRERA
Session: Poster Display