Abstract 59P
Background
Cell therapy has emerged as a promising approach in cancer treatment, leveraging the potential of the patient's immune system to fight tumors. However, the assessment of the efficacy and safety of these therapies remains a significant challenge, since the current available approaches (i.e. 2D cell cultures and animals) have strong limitations in terms of predictability, reliability, and ability to fully mimic the human immune system. This study presents a groundbreaking technological approach in cell therapy testing by integrating 3D patient-derived cancer models with circulating immune cells co-cultured onto an Organ-on-Chip (OoC) platform.
Methods
Biologically relevant cancer samples have been optimized by using an alginate-based structure closely resembling the tumor extracellular matrix. Different cancer cell lines (i.e. MDA-MB-231, SKOV-3, HTLA-230) have been embedded in the matrix and cultured up to 2 months under fluid-dynamic conditions with a OOC chamber, simulating the bloodstream. Alternatively, patient derived tumor biopsies have been coated by a thin layer of alginate, to enhance their structural stability over time, and cultured ex vivo in the same OOC. At the same time, peripheral blood mononuclear cells have been injected in the circulatory OOC circuit and their extravasation and tumor infiltration analysed.
Results
While tumor cells are able to maintain a good viability, cytoskeleton reorganization and migration within the polymeric matrix up to 2 months of culture, patient derived biopsies displayed a challenging survival ex vivo, although the presence of the fluid flow was able to improve the tumor cells survival. The immune checkpoint ligands PD-L1 and PD-L2 were successfully upregulated by the presence of the IFN-gamma and 3% of PBMC derived natural killer cells were able to leave the circulatory flow, and infiltrate the tumor matrix where they induce apoptosis.
Conclusions
A novel fully humanized OOC based platform has been developed to co-culture clinically relevant human cancer model, while immune cells are in circulation, with the final aim to deepen insights into the crosstalk among immune /tumor cells and test cellular therapies in a reproducible and reliable way.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
S. Scaglione, M. Aiello: Financial Interests, Personal, Member of Board of Directors: React4life. All other authors have declared no conflicts of interest.
Resources from the same session
1P - Integrated Data Analysis within IMMUcan Identifies Prognostic Features of Early NSCLC
Presenter: Daniel Schulz
Session: Poster Display
3P - Exploratory efficacy analysis by smoking status in PD-L1 high patients in the phase III, non-small cell lung cancer (NSCLC) IMpower110 study
Presenter: Luis Paz-Ares
Session: Poster Display
4P - Immune exoproteome, soluble proteome and immune-related gene expression profiles of anti-PD-1 therapy in stage IIIB/IV Non-Small Cell Lung Cancer: relevance of immunosuppressive factors
Presenter: Paulo Santos
Session: Poster Display
5P - Blood immune-inflammatory dynamic unveils distinctive irAE features in ICI treated NSCLC
Presenter: Giulia Mazzaschi
Session: Poster Display
6P - CD161+CD127+CD8+ T cells as a critical predictor of the efficacy of anti-PD-1 immunotherapy in diabetic patients with non-small cell lung cancer
Presenter: Jingjing Qu
Session: Poster Display
7P - A T-cell-derived circulating DNA as a biomarker for response to anti-PD(L)1 immunotherapy in advanced stage non-small cell lung cancer
Presenter: Nuthchaya Mejun
Session: Poster Display
9P - Primary NSCLC patient-derived microtumors (PMTs) for clinical-relvant prediction of immunotherapy efficacy
Presenter: Fabienne Nocera
Session: Poster Display
11P - Decreased monocyte-to-lymphocyte ratio was associated with satisfied outcomes of first-line PD-1 inhibitors plus chemotherapy in stage IIIB-IV non-small cell lung cancer
Presenter: Liang Zheng
Session: Poster Display
12P - Spatially preserved multi-region transcriptomic subtyping and biomarkers associated with long-term benefit with chemoimmunotherapy in extensive-stage small cell lung cancer (ES-SCLC)
Presenter: Melina Peressini Álvarez
Session: Poster Display