Abstract 200P
Background
Understanding the complex biology of metastatic tumors is critical for advancing cancer biology research and improving therapeutic interventions. To address this challenge, we have developed a novel multi-organ-on-chip (Multi-OOC) platform designed to unravel the intricacies of breast to bone (B2B) metastatic tumor growth. This innovative platform integrates organ-specific tissue models fluidically interconnected to mimic the dynamic interactions between primary tumor and distant organ during metastasis. By replicating the physiological microenvironments of various target organs, our model provides a unique opportunity to investigate the entire metastatic cascade, from tumor cell dissemination, circulating tumor cells (CTCs) survival under flow and colonization. In order to support real-time monitoring of cellular infiltration and response to therapeutic agents in a multi-organ context optically transparent OOC device has been developed, compatible with the optical microscope observation.
Methods
A breast cancer cell laden hydrogel has been developed by using MDA-MB-231 cells with and without endothelial cells (HUVEC), forming the capillary network. A computational fluid dynamic simulation was done to set up the proper capillary velocity and induced shear stresses. In a second chamber, a bone tissue model was developed as metastasis target: different ratio of hydroxyapatite (HA) has been included in a polymeric matrix to introduce a bone like mineral phase. Tumor cell infiltration and CTC survival rate have been monitored using different fluid-dynamic conditions and HA content.
Results
A multicompartmental OOC has been developed and successfully validated. The 3D breast cancer model displayed long term (2 months) survival in vitro in dynamic conditions, and a cells cytoskeleton reorganization was highlighted. The CTCs survival was shown correlated to the shear stresses induced by the fluid flow into the Multi-OOC. Different levels of CTCs infiltration in the mineralized matrix hosted in the metastatic OOC chamber were observed.
Conclusions
This platform holds great promise for accelerating the development of targeted therapies and personalized treatment strategies, ultimately advancing our understanding of metastatic cancer biology.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
M. Aiello, S. Scaglione: Financial Interests, Personal, Member of Board of Directors: React4life. All other authors have declared no conflicts of interest.
Resources from the same session
1P - Integrated Data Analysis within IMMUcan Identifies Prognostic Features of Early NSCLC
Presenter: Daniel Schulz
Session: Poster Display
3P - Exploratory efficacy analysis by smoking status in PD-L1 high patients in the phase III, non-small cell lung cancer (NSCLC) IMpower110 study
Presenter: Luis Paz-Ares
Session: Poster Display
4P - Immune exoproteome, soluble proteome and immune-related gene expression profiles of anti-PD-1 therapy in stage IIIB/IV Non-Small Cell Lung Cancer: relevance of immunosuppressive factors
Presenter: Paulo Santos
Session: Poster Display
5P - Blood immune-inflammatory dynamic unveils distinctive irAE features in ICI treated NSCLC
Presenter: Giulia Mazzaschi
Session: Poster Display
6P - CD161+CD127+CD8+ T cells as a critical predictor of the efficacy of anti-PD-1 immunotherapy in diabetic patients with non-small cell lung cancer
Presenter: Jingjing Qu
Session: Poster Display
7P - A T-cell-derived circulating DNA as a biomarker for response to anti-PD(L)1 immunotherapy in advanced stage non-small cell lung cancer
Presenter: Nuthchaya Mejun
Session: Poster Display
9P - Primary NSCLC patient-derived microtumors (PMTs) for clinical-relvant prediction of immunotherapy efficacy
Presenter: Fabienne Nocera
Session: Poster Display
11P - Decreased monocyte-to-lymphocyte ratio was associated with satisfied outcomes of first-line PD-1 inhibitors plus chemotherapy in stage IIIB-IV non-small cell lung cancer
Presenter: Liang Zheng
Session: Poster Display
12P - Spatially preserved multi-region transcriptomic subtyping and biomarkers associated with long-term benefit with chemoimmunotherapy in extensive-stage small cell lung cancer (ES-SCLC)
Presenter: Melina Peressini Álvarez
Session: Poster Display