Abstract 59P
Background
Cell therapy has emerged as a promising approach in cancer treatment, leveraging the potential of the patient's immune system to fight tumors. However, the assessment of the efficacy and safety of these therapies remains a significant challenge, since the current available approaches (i.e. 2D cell cultures and animals) have strong limitations in terms of predictability, reliability, and ability to fully mimic the human immune system. This study presents a groundbreaking technological approach in cell therapy testing by integrating 3D patient-derived cancer models with circulating immune cells co-cultured onto an Organ-on-Chip (OoC) platform.
Methods
Biologically relevant cancer samples have been optimized by using an alginate-based structure closely resembling the tumor extracellular matrix. Different cancer cell lines (i.e. MDA-MB-231, SKOV-3, HTLA-230) have been embedded in the matrix and cultured up to 2 months under fluid-dynamic conditions with a OOC chamber, simulating the bloodstream. Alternatively, patient derived tumor biopsies have been coated by a thin layer of alginate, to enhance their structural stability over time, and cultured ex vivo in the same OOC. At the same time, peripheral blood mononuclear cells have been injected in the circulatory OOC circuit and their extravasation and tumor infiltration analysed.
Results
While tumor cells are able to maintain a good viability, cytoskeleton reorganization and migration within the polymeric matrix up to 2 months of culture, patient derived biopsies displayed a challenging survival ex vivo, although the presence of the fluid flow was able to improve the tumor cells survival. The immune checkpoint ligands PD-L1 and PD-L2 were successfully upregulated by the presence of the IFN-gamma and 3% of PBMC derived natural killer cells were able to leave the circulatory flow, and infiltrate the tumor matrix where they induce apoptosis.
Conclusions
A novel fully humanized OOC based platform has been developed to co-culture clinically relevant human cancer model, while immune cells are in circulation, with the final aim to deepen insights into the crosstalk among immune /tumor cells and test cellular therapies in a reproducible and reliable way.
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
S. Scaglione, M. Aiello: Financial Interests, Personal, Member of Board of Directors: React4life. All other authors have declared no conflicts of interest.
Resources from the same session
170P - Targeting myeloid cells in non-small cell lung cancer and hepatocellular carcinoma: a window-of-opportunity trial of nivolumab with BMS-813160 (CCR2/5i) or BMS-986253 (anti-IL8)
Presenter: Nicholas Venturini
Session: Poster Display
171P - Immune landscape and CLEVER-1 expression in hepatoblastoma
Presenter: Ville Väyrynen
Session: Poster Display
172P - PLCE1 stabilizes ENO1 to enhance glycolysis in esophageal squamous cell carcinoma (ESCC) and induces an immune-suppressive tumor microenvironment
Presenter: Ju Yang
Session: Poster Display
173P - Depleting resident peritoneal macrophages is an effective treatment for peritoneal metastasized colorectal cancer
Presenter: Job Saris
Session: Poster Display
174P - Targeting SPHK1 in macrophages suppresses liver metastasis of colorectal cancer and decouples anti-tumor immunity from immunotherapy toxicity
Presenter: Yizhi Zhan
Session: Poster Display
175P - MicroRNA-548c: An Immune-Activator microRNA at the Tumor Microenvironment and Immune Milieu of Breast Cancer
Presenter: Alyaa Dawoud
Session: Poster Display
176P - Multiplex-immunoflourescence spatial patterns to predict triple-negative breast cancer molecular subtypes in the IMMUcan study
Presenter: Andrea Joaquin Garcia
Session: Poster Display
177P - The Immune-microenvironment Confers Chemoresistance in Breast cancer through activation of VEGFR2/STAT3/BIRC5 signaling
Presenter: Bhawna Deswal
Session: Poster Display
178P - Dynamics of breast cancer T cell repertoire during neoadjuvant chemotherapy / immunotherapy.
Presenter: Charlotte Birchall
Session: Poster Display
179P - Integrating multiplex immunofluorescence with gene expression data in the IMMUcan HER2-positive breast cancer cohort
Presenter: Mattia Rediti
Session: Poster Display