Abstract 12P
Background
In situ cancer vaccines are capable of leveraging the immune system to attack tumors by utilizing the whole repertoire of tumor antigens present in the tumor microenvironment. Pyroptosis caused by N-terminal of gasdermin D (GSDMDNT) could be adopted to extensively release tumor antigens in situ, while its delivery to cancer cells is a major challenge.
Methods
We synthesized a series of highly branched poly(β-amino ester)s (hPBAE) polymers modified with various end caps, identifying a lead hPBAE candidate that possessed satisfactory mRNA translation efficiency and highest immunogenicity via STING agonism. The STING-activating hPBAE (SA-hPBAE) were further condensed with GSDMDNT mRNA and pancreatic cancer-targeting peptide to construct the STING-Activable and Pyroptotic in situ cancer vaccine (SAPvax).
Results
The STING-stimulating ability of SA-hPBAEwas validated by time- and dose-dependent downstream cytokines (IFN-β, TNF-α, IL-6) production and STING pathway phosphorylation (p-STING, p-TBK1, p-IRF3), which was further supported by dynamic molecular docking of specific end cap and STING protein. The production of SAPvax nanocomplexes was confirmed by electron microscopy. Notably, SAPvax resulted in significant inhibition of pancreatic tumor growth both in vitro and in vivo. A robust synergistic activation of innate and adaptive antitumor immune responses was observed in tumors treated with SAPvax via flow cytometry and transcriptome analysis. SAPvax further exhibited excellent therapeutic effects against tumor recurrence and metastasis via effective induction of memory immunity.
Conclusions
The rational design of current nanocomplexes has proposed a new strategy of in situ cancer vaccine that takes advantages of the cargo GSDMDNT-mediated pyroptosis and the delivery vector SA-hPBAE-mediated immunostimulatory effects via the STING signaling pathway, promising to provide clinical benefits for patients with pancreatic cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
This work was financially supported by the National Natural Science Foundation of China (U20A20378, TB.L.; 82100645, SY.S.).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1802P - Cost-effectiveness study of atezolizumab (ATZ) vs. durvalumab (DUR) in elderly extensive disease small cell lung cancer (ED-SCLC) patients (pts): Real-world data (RWD) on first-line chemotherapy combined with immune-checkpoint inhibitors (Chemo-ICIs)
Presenter: Ken Yamamoto
Session: Poster session 07
1803P - Analysis of samples from the SCLC REACTION trial: Discovery of biomarkers to optimize treatment
Presenter: Pernelle Lavaud
Session: Poster session 07
1805P - PKD1L1 mutations in small cell lung cancer: A genomic signature for poor prognosis and drug susceptibility
Presenter: Ning Tang
Session: Poster session 07
Resources:
Abstract
1806P - Clinical characteristics and management of small cell lung cancer long survivors
Presenter: Elisa Gobbini
Session: Poster session 07
1807P - Spatial analyses revealed MMP7 as the biomarker of tumor boundary correlated with immune resistance in small cell lung cancer
Presenter: Le Tang
Session: Poster session 07
1809P - Validation of the lung inmune prognostic (LIPI) index in first-line immunotherapy treatment of small cell lung carcinoma
Presenter: Patricia Cruz Castellanos
Session: Poster session 07
1810P - MYC expression defines distinct transcriptomic landscape and affects response to DNA-damaging therapies in SCLC
Presenter: Caterina de Rosa
Session: Poster session 07