Abstract 12P
Background
In situ cancer vaccines are capable of leveraging the immune system to attack tumors by utilizing the whole repertoire of tumor antigens present in the tumor microenvironment. Pyroptosis caused by N-terminal of gasdermin D (GSDMDNT) could be adopted to extensively release tumor antigens in situ, while its delivery to cancer cells is a major challenge.
Methods
We synthesized a series of highly branched poly(β-amino ester)s (hPBAE) polymers modified with various end caps, identifying a lead hPBAE candidate that possessed satisfactory mRNA translation efficiency and highest immunogenicity via STING agonism. The STING-activating hPBAE (SA-hPBAE) were further condensed with GSDMDNT mRNA and pancreatic cancer-targeting peptide to construct the STING-Activable and Pyroptotic in situ cancer vaccine (SAPvax).
Results
The STING-stimulating ability of SA-hPBAEwas validated by time- and dose-dependent downstream cytokines (IFN-β, TNF-α, IL-6) production and STING pathway phosphorylation (p-STING, p-TBK1, p-IRF3), which was further supported by dynamic molecular docking of specific end cap and STING protein. The production of SAPvax nanocomplexes was confirmed by electron microscopy. Notably, SAPvax resulted in significant inhibition of pancreatic tumor growth both in vitro and in vivo. A robust synergistic activation of innate and adaptive antitumor immune responses was observed in tumors treated with SAPvax via flow cytometry and transcriptome analysis. SAPvax further exhibited excellent therapeutic effects against tumor recurrence and metastasis via effective induction of memory immunity.
Conclusions
The rational design of current nanocomplexes has proposed a new strategy of in situ cancer vaccine that takes advantages of the cargo GSDMDNT-mediated pyroptosis and the delivery vector SA-hPBAE-mediated immunostimulatory effects via the STING signaling pathway, promising to provide clinical benefits for patients with pancreatic cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
This work was financially supported by the National Natural Science Foundation of China (U20A20378, TB.L.; 82100645, SY.S.).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
32P - Patient derived circulating tumor cell clusters for personalized chemotherapy
Presenter: Prashant Kumar
Session: Poster session 07
Resources:
Abstract
33P - Anti-tumor effect of Debio 0432, a potent and selective USP1 inhibitor, in combination with PARP inhibitors
Presenter: Noémie Luong
Session: Poster session 07
34P - A novel gene family underlying cancer cell resilience
Presenter: David Amici
Session: Poster session 07
35P - The selective WEE1 inhibitor azenosertib shows synergistic anti-tumor effects in combination with topoisomerase I inhibitor-based antibody drug conjugates
Presenter: Jianhui Ma
Session: Poster session 07
36P - Branched-chain amino acids metabolism reprogramming in trastuzumab primary resistant HER2 positive breast cancer
Presenter: Yijia Hua
Session: Poster session 07
37P - A consensus gene set facilitates enrichment analysis of cancer hallmarks
Presenter: Otília Menyhart
Session: Poster session 07
38P - Feasibility of expanding tumor-infiltrating lymphocytes from cryopreserved tumor specimens after long-term storage
Presenter: Daria Kuznetsova
Session: Poster session 07
39P - Search for rare copy number variants associated with hereditary breast cancer in Finnish case-control cohorts
Presenter: Timo Kumpula
Session: Poster session 07
40P - STOPIN: A new approach to solve the hematological toxicity of antibody-drug conjugates (ADC) with soft topoisomerase inhibitor
Presenter: Xinghai Wang
Session: Poster session 07
41P - Cancer therapy-related cardiac dysfunction (CTRCD) after radiation therapy for breast cancer: Results of the French BACCARAT study
Presenter: Manoj Kumar Francois HONARYAR
Session: Poster session 07
Resources:
Abstract