Abstract 12P
Background
In situ cancer vaccines are capable of leveraging the immune system to attack tumors by utilizing the whole repertoire of tumor antigens present in the tumor microenvironment. Pyroptosis caused by N-terminal of gasdermin D (GSDMDNT) could be adopted to extensively release tumor antigens in situ, while its delivery to cancer cells is a major challenge.
Methods
We synthesized a series of highly branched poly(β-amino ester)s (hPBAE) polymers modified with various end caps, identifying a lead hPBAE candidate that possessed satisfactory mRNA translation efficiency and highest immunogenicity via STING agonism. The STING-activating hPBAE (SA-hPBAE) were further condensed with GSDMDNT mRNA and pancreatic cancer-targeting peptide to construct the STING-Activable and Pyroptotic in situ cancer vaccine (SAPvax).
Results
The STING-stimulating ability of SA-hPBAEwas validated by time- and dose-dependent downstream cytokines (IFN-β, TNF-α, IL-6) production and STING pathway phosphorylation (p-STING, p-TBK1, p-IRF3), which was further supported by dynamic molecular docking of specific end cap and STING protein. The production of SAPvax nanocomplexes was confirmed by electron microscopy. Notably, SAPvax resulted in significant inhibition of pancreatic tumor growth both in vitro and in vivo. A robust synergistic activation of innate and adaptive antitumor immune responses was observed in tumors treated with SAPvax via flow cytometry and transcriptome analysis. SAPvax further exhibited excellent therapeutic effects against tumor recurrence and metastasis via effective induction of memory immunity.
Conclusions
The rational design of current nanocomplexes has proposed a new strategy of in situ cancer vaccine that takes advantages of the cargo GSDMDNT-mediated pyroptosis and the delivery vector SA-hPBAE-mediated immunostimulatory effects via the STING signaling pathway, promising to provide clinical benefits for patients with pancreatic cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
This work was financially supported by the National Natural Science Foundation of China (U20A20378, TB.L.; 82100645, SY.S.).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
84P - Advancing precision oncology: Integrating immune landscape and genomics for tailored therapy in metastatic cancer patients
Presenter: Eurydice Angeli
Session: Poster session 07
85P - True single-circulating tumor cell genomics reveals enriched therapy-resistance signatures in advanced colorectal cancer patients
Presenter: Manoj Dongare
Session: Poster session 07
Resources:
Abstract
86P - Making the precision oncology landscape of Europe and the Republic of Ireland programmatically accessible
Presenter: Brendan Reardon
Session: Poster session 07
87P - Application of tissue and liquid-based next generation sequencing (NGS) for comprehensive genomic profiling: Evaluating the clinical value of ctDNA technology in treatment decision making
Presenter: Fatima Usman
Session: Poster session 07
88P - Next-generation sequencing (NGS) in routine care: Medical practice in 24 countries from the pan-cancer WAYFIND-R registry
Presenter: Christophe Le Tourneau
Session: Poster session 07
89P - Comprehensive genomic profiling of circulating tumor DNA for treatment recommendation: A sub-project of the IMPRESS-Norway trial
Presenter: Ingrid Dyvik
Session: Poster session 07
90P - Clonal haematopoiesis of indeterminate potential (CHIP) might mislead interpretation of ATM and CHEK2 alterations detected on liquid biopsies
Presenter: Pasquale Rescigno
Session: Poster session 07
91P - Ultra-sensitive ctDNA NGS assay enhances genomic profiling for advanced HR-positive, HER2-negative breast cancer on endocrine therapy
Presenter: Hao Liao
Session: Poster session 07
92P - Transformative diagnostics in urothelial carcinoma: Utilizing targeted NGS and LP-WGS for non-invasive detection and personalized medicine
Presenter: Huan Zhao
Session: Poster session 07
93P - UriMee: A novel non-invasive test for diagnosis of urothelial carcinoma by detection of methylation markers in urinary sediment DNA
Presenter: Ming cao
Session: Poster session 07