Abstract 145P
Background
The emergence of immune checkpoint inhibitors (ICIs) in recent years has revolutionised the therapeutic landscape in non-small cell lung cancer (NSCLC), but the overall response rate (ORR) is low, although TMB and MSI show some predictive value for immune efficacy. In real-world clinical practice, however, immunotherapy decisions for many patients must be made on the basis of limited clinical information. Here, we developed a machine learning-based clinical decision support algorithm to synthesise multidimensional clinical information to predict therapeutic response to ICI in NSCLC patients and reduce the rate of first-line therapeutic misdosing.
Methods
A total of 66 clinical characteristics and biochemical indexes were collected from electronic medical records, and correlated with optimal clinical efficacy. Neural network algorithm, was used to predict immune response and then validated in an independent validation set of ICI-treated patients.
Results
A total of 402 patients were enrolled in the study, including 321 patients in the training set (ORR, 57.3%) and 81 patients in the test set (ORR, 58%). Neural network algorithm showed a superior pronounced predictive effect (area under the curve [AUC] 0.71) using only eight common clinical parameters, which included sex, age, tumor subtype, smoking history, lymphocyte, eosinophil, neutrophil, and erythrocyte distribution width. The overall accuracy in the validation set was 70.4%, the positive predictive value (PPV) was 70.2% and the negative predictive value (NPV) was 70.8%. The model was able to identify 50% of these poorly treated patients (17/34), mainly non-responders and hyper-progressors, in a timely manner prior to dosing, resulting in a 50% reduction in the rate of clinical misses.
Conclusions
Overall, our neural network algorithm provides a rapid clinical decision support model for predicting ICI treatment response in NSCLC patients. Furthermore, this model relies only on basic clinical information and biochemical indicators, which can effectively reduce clinical overdosing in the first-line setting.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
OrigiMed Shanghai Co., Ltd.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
183P - Development of a cadherin-17 (CDH17) immunohistochemistry assay for use as a companion diagnostic for cabotamig in gastrointestinal cancers
Presenter: Dennis Wong
Session: Poster session 08
184P - From breast and gastric to beyond: Expanding HER2 detection in solid tumors using quantitative RNA and protein analysis
Presenter: Kristian Egebjerg
Session: Poster session 08
185P - Multi-omics profiling and clinical characterization of colon-like cancer of unknown primary (CUP)
Presenter: Maria Pouyiourou
Session: Poster session 08
186P - Differences in antigen and immune marker expression in lymphoepithelioma-like carcinoma (LELC) and nasopharyngeal carcinoma (NPC): A multiplex immunohistochemistry (mIHC), spatial transcriptomic and multiplex immunofluorescence (mIF)-based analysis
Presenter: Daniel Peh
Session: Poster session 08
187P - Organoid growth-based oncological sensitivity test (OncoSensi) for predicting radiation therapy outcomes in pharyngeal and esophageal cancer
Presenter: Dong Woo Lee
Session: Poster session 08
188P - Integration of immunohistochemistry and transcriptomics reveals new insights into the immune landscape of soft-tissue sarcomas
Presenter: Giulia Petroni
Session: Poster session 08
189P - An image-based deep learning prediction model for characterization of the drug tolerant persister cell state
Presenter: Lauren Cech
Session: Poster session 08
190P - A large scale proteogenomics atlas for precision oncology research
Presenter: Timothy Anthony Yap
Session: Poster session 08
191P - Understanding and overcoming resistance to selective FGFR inhibitors across FGFR2-driven tumors
Presenter: Francesco Facchinetti
Session: Poster session 08
192P - Use of biosimulation to predict homologous recombination deficiency and PARPi benefit in patients with ovarian, pancreatic, prostate and triple negative breast cancers
Presenter: Daniel Palmer
Session: Poster session 08