Abstract 145P
Background
The emergence of immune checkpoint inhibitors (ICIs) in recent years has revolutionised the therapeutic landscape in non-small cell lung cancer (NSCLC), but the overall response rate (ORR) is low, although TMB and MSI show some predictive value for immune efficacy. In real-world clinical practice, however, immunotherapy decisions for many patients must be made on the basis of limited clinical information. Here, we developed a machine learning-based clinical decision support algorithm to synthesise multidimensional clinical information to predict therapeutic response to ICI in NSCLC patients and reduce the rate of first-line therapeutic misdosing.
Methods
A total of 66 clinical characteristics and biochemical indexes were collected from electronic medical records, and correlated with optimal clinical efficacy. Neural network algorithm, was used to predict immune response and then validated in an independent validation set of ICI-treated patients.
Results
A total of 402 patients were enrolled in the study, including 321 patients in the training set (ORR, 57.3%) and 81 patients in the test set (ORR, 58%). Neural network algorithm showed a superior pronounced predictive effect (area under the curve [AUC] 0.71) using only eight common clinical parameters, which included sex, age, tumor subtype, smoking history, lymphocyte, eosinophil, neutrophil, and erythrocyte distribution width. The overall accuracy in the validation set was 70.4%, the positive predictive value (PPV) was 70.2% and the negative predictive value (NPV) was 70.8%. The model was able to identify 50% of these poorly treated patients (17/34), mainly non-responders and hyper-progressors, in a timely manner prior to dosing, resulting in a 50% reduction in the rate of clinical misses.
Conclusions
Overall, our neural network algorithm provides a rapid clinical decision support model for predicting ICI treatment response in NSCLC patients. Furthermore, this model relies only on basic clinical information and biochemical indicators, which can effectively reduce clinical overdosing in the first-line setting.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
OrigiMed Shanghai Co., Ltd.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
122P - Practice patterns and treatment outcomes of molecular tumour board (MTB)-based personalized cancer therapies: A single-center experience
Presenter: Florian Moik
Session: Poster session 08
123P - Pan-cancer homologous recombination deficiency (HRD) evaluation in patients enrolled in a routine molecular screening program
Presenter: Paula Romero-Lozano
Session: Poster session 08
124P - Incidence of activating frameshift and nonsense mutations in clinically actionable oncogenes
Presenter: Sjors Kas
Session: Poster session 08
125P - Comparison of microarray and next-generation sequencing-based approaches for detection of homologous recombination deficiency
Presenter: Caleb Kidwell
Session: Poster session 08
126P - Genomic landscape and prognostic impact of HER2 low-expressing tumors
Presenter: Aditya Shreenivas
Session: Poster session 08
127P - Clinical utility of circulating tumor DNA (ctDNA) next generation sequencing (NGS) to inform treatment decisions for patients (pts) with advanced solid tumors
Presenter: Diego Gomez Puerto
Session: Poster session 08
128P - Whole blood transcriptomics identifies transcriptional patterns linked to outcomes in patients receiving immune checkpoint inhibitors
Presenter: Sara Hone Lopez
Session: Poster session 08
129P - Integrating large data to unveil vulnerabilities for patients with hot tumors resistant to checkpoint inhibition
Presenter: Anlin Li
Session: Poster session 08
130P - Ipilimumab plus nivolumab (Ipi+Nivo) in patients with tumors harboring high tumor mutational burden or load (TMB/TML-H): Results from the Drug Rediscovery Protocol (DRUP)
Presenter: Soemeya Haj Mohammad
Session: Poster session 08
131P - Systemic immune-inflammation index and overall survival with checkpoint inhibitors
Presenter: Oliver Kennedy
Session: Poster session 08