Abstract 145P
Background
The emergence of immune checkpoint inhibitors (ICIs) in recent years has revolutionised the therapeutic landscape in non-small cell lung cancer (NSCLC), but the overall response rate (ORR) is low, although TMB and MSI show some predictive value for immune efficacy. In real-world clinical practice, however, immunotherapy decisions for many patients must be made on the basis of limited clinical information. Here, we developed a machine learning-based clinical decision support algorithm to synthesise multidimensional clinical information to predict therapeutic response to ICI in NSCLC patients and reduce the rate of first-line therapeutic misdosing.
Methods
A total of 66 clinical characteristics and biochemical indexes were collected from electronic medical records, and correlated with optimal clinical efficacy. Neural network algorithm, was used to predict immune response and then validated in an independent validation set of ICI-treated patients.
Results
A total of 402 patients were enrolled in the study, including 321 patients in the training set (ORR, 57.3%) and 81 patients in the test set (ORR, 58%). Neural network algorithm showed a superior pronounced predictive effect (area under the curve [AUC] 0.71) using only eight common clinical parameters, which included sex, age, tumor subtype, smoking history, lymphocyte, eosinophil, neutrophil, and erythrocyte distribution width. The overall accuracy in the validation set was 70.4%, the positive predictive value (PPV) was 70.2% and the negative predictive value (NPV) was 70.8%. The model was able to identify 50% of these poorly treated patients (17/34), mainly non-responders and hyper-progressors, in a timely manner prior to dosing, resulting in a 50% reduction in the rate of clinical misses.
Conclusions
Overall, our neural network algorithm provides a rapid clinical decision support model for predicting ICI treatment response in NSCLC patients. Furthermore, this model relies only on basic clinical information and biochemical indicators, which can effectively reduce clinical overdosing in the first-line setting.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
OrigiMed Shanghai Co., Ltd.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
173P - Unveiling a novel EpCAM-CD24+ circulating cells with unidentified origin associated with breast cancer distant metastasis
Presenter: Evgeniya Grigoryeva
Session: Poster session 08
174P - Prognostic value of the immune and metabolic profile in the response to neoadjuvant treatment with ICIs in triple-negative breast cancer patients (TNBC)
Presenter: Lucía Serrano García
Session: Poster session 08
175P - Utility of artificial intelligence (AI) in Ki67 scoring of a breast cancer (BC) patient population
Presenter: Xavier Pichon
Session: Poster session 08
176P - ERBB2 amplifications across sex, race, and cancer types
Presenter: Marc Machaalani
Session: Poster session 08
177P - HER2 testing in multiple solid tumors: Concordance between 3 scoring algorithms
Presenter: Wentao Yang
Session: Poster session 08
178P - PD-L1 expression in ER-low versus triple-negative (TN) advanced breast cancer (aBC), and according to phenotypic evolution from primary to recurrent disease
Presenter: Federica Miglietta
Session: Poster session 08
179P - Multimodal deep learning integrating MRI and molecular profiles for predicting outcomes in triple-negative breast cancer
Presenter: Seong Hwan Park
Session: Poster session 08
181P - Molecular characterization and immune microenvironment analysis of MSI-H patients with or without MMR gene mutations
Presenter: Mengxi Ge
Session: Poster session 08
182P - Multi-modal artificial intelligence outperforms image-based approaches for mutation prediction from H&E tissue images in colorectal cancer
Presenter: Marc Päpper
Session: Poster session 08