Abstract 145P
Background
The emergence of immune checkpoint inhibitors (ICIs) in recent years has revolutionised the therapeutic landscape in non-small cell lung cancer (NSCLC), but the overall response rate (ORR) is low, although TMB and MSI show some predictive value for immune efficacy. In real-world clinical practice, however, immunotherapy decisions for many patients must be made on the basis of limited clinical information. Here, we developed a machine learning-based clinical decision support algorithm to synthesise multidimensional clinical information to predict therapeutic response to ICI in NSCLC patients and reduce the rate of first-line therapeutic misdosing.
Methods
A total of 66 clinical characteristics and biochemical indexes were collected from electronic medical records, and correlated with optimal clinical efficacy. Neural network algorithm, was used to predict immune response and then validated in an independent validation set of ICI-treated patients.
Results
A total of 402 patients were enrolled in the study, including 321 patients in the training set (ORR, 57.3%) and 81 patients in the test set (ORR, 58%). Neural network algorithm showed a superior pronounced predictive effect (area under the curve [AUC] 0.71) using only eight common clinical parameters, which included sex, age, tumor subtype, smoking history, lymphocyte, eosinophil, neutrophil, and erythrocyte distribution width. The overall accuracy in the validation set was 70.4%, the positive predictive value (PPV) was 70.2% and the negative predictive value (NPV) was 70.8%. The model was able to identify 50% of these poorly treated patients (17/34), mainly non-responders and hyper-progressors, in a timely manner prior to dosing, resulting in a 50% reduction in the rate of clinical misses.
Conclusions
Overall, our neural network algorithm provides a rapid clinical decision support model for predicting ICI treatment response in NSCLC patients. Furthermore, this model relies only on basic clinical information and biochemical indicators, which can effectively reduce clinical overdosing in the first-line setting.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
OrigiMed Shanghai Co., Ltd.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
153P - 23ME-01473, an Fc-enhanced anti-ULBP6/2/5 antibody, restores anti-tumor NK cell function through NKG2D and FcgRIIIa activation
Presenter: Kim Gerrick
Session: Poster session 08
154P - Phase II study of nivolumab and relatlimab utilizing single cell analysis of circulating T cells reveals immune features associated with response to dual PD-1 and LAG-3 inhibition
Presenter: James Dollar
Session: Poster session 08
155P - The molecular basis of the lymphocyte stability index (LSI): A pan-cancer peripheral biomarker for survival post immune checkpoint blockade (ICB)
Presenter: Robert Watson
Session: Poster session 08
156P - Microbiota-related multiomics to assess the clinical relevance of antibiotics (ATB) in immunotherapy (ICI)
Presenter: Adele Bonato
Session: Poster session 08
157P - Soluble and EV-bound CD27 act as antagonistic biomarkers in patients with solid tumors undergoing immunotherapy
Presenter: Joao Gorgulho
Session: Poster session 08
158P - Patterns of immune-related adverse events in early-phase cancer immunotherapy trials
Presenter: Benjamin Fairfax
Session: Poster session 08
160P - Predicting immune-related adverse events using biomarkers in early-phase cancer immunotherapy trials
Presenter: Benjamin Fairfax
Session: Poster session 08
161P - Fibroblast activation protein (FAP)-CD40 (RO7300490) mediates intratumoral DC maturation and modulation of the tumor microenvironment
Presenter: Ignacio Melero
Session: Poster session 08
162P - Exploiting gp100-specific antibodies isolated from immune checkpoint inhibitor-responsive melanoma patients to target tumor cells
Presenter: Lukas Flatz
Session: Poster session 08