Abstract 1194P
Background
Artificial intelligence (AI) based on deep learning and convolutional neural networks (CNN) has been applied to various medical fields. We are developing a novel AI system to support the detection of lung cancer, which will enable physicians to efficiently interpret radiograms and perform diagnosis.
Methods
For training data, we analyzed the image features of 800 chest X-ray images (acquired mainly for lung cancer screening; 400 normal images and 400 abnormal images) from Fukushima Preservative Service Association of Health and 5 000 chest radiographs from the National Institutes of Health (NIH) database. We categorized these data into two groups. Group A included both 800 images and NIH database, and group B included only 800 images. Then, using ImageNet, we used these datasets to develop a proprietary AI algorithm with deep learning and a CNN, and analyzed the statistical accuracy of interpretations of the radiograms. We also demonstrated abnormal shadow in the form of a heat map display on each chest radiograph for easy visualization, and presented the positive probability score as an index value from 0.0 to 1.0 indicating the possibility of lung cancer. The accuracy of our AI system was improved by using technology to account for differences in radiographic apparatus and imaging environments.
Results
Using a positive probability cutoff value of 0.5, our novel AI showed an area under the curve (AUC) of 0.74, sensitivity of 0.75, and specificity of 0.60 for group A, and AUC of 0.79, sensitivity of 0.72, and specificity of 0.74 for group B. The accuracy on both groups was superior to that of radiologists (AUC 0.72), and was also compatible with previous study reports (AUC 0.67-0.78). The number of training data did not make a difference in accuracy. The heat map display was also clearly demonstrated on the monitor screen if a roentgenogram had abnormal shadows.
Conclusions
In this study, we confirmed that our proprietary AI system had a similar accuracy in the interpretation of chest radiographs to that of previous studies and radiologists. However, further research and improvement is needed to verify the accuracy. We are now in the process of performing various types of validation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Grants-in-Aid for Scientific Research in Japan.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
845TiP - CNS lymphoma imaging and molecular biomarkers study: CLIMB
Presenter: Panagiotis Ntellas
Session: Poster session 09
1173P - Combining mass spectrometry with quantitative continuous scoring to unlock the full quantitative potential of immunohistochemistry
Presenter: Ana Hidalgo-Sastre
Session: Poster session 09
1174P - FLAMINGO: Accurate cancer detection from ultra-low-pass whole genome sequencing of cell-free DNA
Presenter: Daan Vessies
Session: Poster session 09
1175P - Universal circulating tumor DNA quantification using deep learning
Presenter: Anders Skanderup
Session: Poster session 09
Resources:
Abstract
1176P - Potential utility of ctDNA to detect false positive PET/CT in the evaluation of lymphoma response
Presenter: Alejandro martín-muñoz
Session: Poster session 09
1177P - FRESH: The Gustave Roussy program to facilitate access to liquid biopsy for precision oncology in France
Presenter: Etienne Rouleau
Session: Poster session 09
1178P - EGFR evaluation in non-small cell lung cancer: An artificial intelligence approach to pre-molecular analysis
Presenter: Chad Vanderbilt
Session: Poster session 09
1179P - WomEC: a novel diagnostic test for the detection of endometrial cancer in uterine fluids
Presenter: Antonio Gil-Moreno
Session: Poster session 09
1180P - An integrated metabolomics-based platform for early-stage detection of multiple cancers
Presenter: imliwati longkumer
Session: Poster session 09